Статья
2018

Electrochemical and Mass Transport Characteristics of the Strongly Basic MA-41 Membrane Modified by Poly-N,N-Diallylmorpholinium


V. I. Zabolotskii V. I. Zabolotskii , D. A. Bondarev D. A. Bondarev , A. V. Bespalov A. V. Bespalov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518130529
Abstract / Full Text

Poly-N,N-diallylmorpholinium bromide is synthesized and characterized using the methods of IR and NMR spectroscopy. The surface modification of MA-41 industrial heterogeneous membranes (Russia) by this polyelectrolyte is carried out from an equivalent mixture of N-methylpyrrolidone and anhydrous formic acid and also from aqueous solutions. The electrochemical characteristics of the modified membranes are studied on the setup with a rotating membrane disk. It is found that the reaction of water dissociation on modified membranes occurs less intensively than on the initial membrane and the main mass transport mechanism in the superlimiting current modes in systems with modified membranes is electroconvection.

Author information
  • Kuban State University, Krasnodar, Russia

    V. I. Zabolotskii, D. A. Bondarev & A. V. Bespalov

References
  1. Rubinshtein, I. and Shtilman, L., Voltage against current curves of cation-exchange membranes, J. Chem. Soc., Faraday Trans. 2, 1979, vol. 75, p. 231.
  2. Zabolotskii, V.I. and Nikonenko, V.V., Electrodialysis of dilute electrolyte solutions: some theoretical and applied aspects, Russ. J. Electrochem., 1996, vol. 32, no. 2, p. 223.
  3. Zabolotsky, V.I. and Nikonenko, V.V., Perenos ionov v membranakh (Ion transport in membranes), Moscow: Nauka, 1996 (in Russian).
  4. Strathmann, H., Electrodialysis, a mature technology with a multitude of new applications, Desalination, 2010, vol. 264, no. 3, p. 268.
  5. Simons, R., Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes, Electrochim. Acta, 1984, vol. 29, no. 2, p. 151.
  6. Zabolotskii, V.I., Shel’deshov, N.V., and Gnusin, N.P., Dissociation of water molecules in systems with ion–exchange membranes, Russ. Chem. Rev., 1988, vol. 57, no. 8, p. 801.
  7. Bauer, B., Strathmann, H., and Effenberger, F., Anion–exchange membranes with improved alkaline stability, Desalination, 1990, vol. 79, p. 125.
  8. Hwang, U.-S. and Choi J.-H., Changes in the electrochemical characteristics of a bipolar membrane immersed in high concentration of alkaline solutions, Sep. Purif. Technol., 2006, vol. 48, no. 1, p. 16.
  9. Shaposhnik, V.A., Kastyuchik, A.S., and Kozaderova, O.A., Irreversible dissociation of water molecules on the ion–exchange membrane–electrolyte solution interface in electrodialysis, Russ. J. Electrochem., 2008, vol. 44, no. 9, p. 1073.
  10. Pismenskaya, N.D., Fedotov, Y.A., Nikonenko, V.V., Belova, E.I., Lopatkova, G.Yu., and Zabolotsky, V.I., Method of modifying anion-exchange membranes, RF Patent 2410147, 2008.
  11. Zabolotsky, V.I., Sharafan, M.V., and Chermit, R.K., Multilayer composite polymer strongly basic membrane and method for production thereof, RF Patent 2559486, 2013.
  12. Kniaginicheva, E.V., Belashova, E.D., and Pismenskaya, N.D., Electrochemical characteristics of AMX membrane modified with strong bifunctional polyelectrolytes, Sorbtsionnye Khromatogr. Protsessy, 2014, vol. 14, no. 5, p. 864.
  13. Pismenskaya, N.D., Nikonenko, V.V., Belova, E.I., Lopatkova, G.Yu., Sistat, Ph., Pourcelly, G., and Larshe, K., Coupled convection of solution near the surface of ion-exchange membranes in intensive current regimes, Russ. J. Electrochem., vol. 43, no. 3, p. 307.
  14. Zabolotskiy, V.I., But, A.Yu., Vasil’eva, V.I., Akberova, E.M., and Melnikov, S.S., Ion transport and electrochemical stability of strongly basic anionexchange membranes under high current electrodialysis conditions, J. Membrane Sci., 2017, vol. 526, p. 60.
  15. Zabolotsky, V.I., Novak, L., Kovalenko, A.V., Nikonenko, V.V., Urtenov, M.H., Lebedev, K.A., and But, A.Yu., Electroconvection in systems with hetero-geneous ion-exchange membranes, Pet. Chem., 2017, vol. 57, no. 7, p. 779.
  16. De Vynck, V. and Goethals, E.F., Synthesis and polymerization of N,N-diallylpyrrolidinium bromide, Macromol. Rapid Commun., 1997, vol. 18, no. 2, p. 149.
  17. Bicak, N. and Senkal, B.F., Synthesis and polymerization of N,N-diallyl morpholinium bromide, Eur. Polym. J., 2000, vol. 36, no. 4, p. 703.
  18. Ali, S.A., Ahmed, S.Z., and Hamad, E.Z., Cyclopolymerization Studies of Diallyl-and Tetraallylpiperazinium Salts, J. Applied Polym. Sci., 1996, vol. 61, no. 7, p. 1077.
  19. Jaeger, W., Bohrisch, J., and Laschewsky, A., Synthetic polymers with quaternary nitrogen atoms–Synthesis and structure of the most used type of cationic polyelectrolytes, Prog. Polym. Sci., 2010, vol. 35, no. 5, p. 511.
  20. Vasil’eva, V.I., Akberova, E.M., Zhiltsova, A.V., Chernykh, E.I., Sirota, E.A., and Agapov, B.L., SEM Diagnostics of the surface of MK-40 and MA-40 heterogeneous ion-exchange membranes in the swollen state after hermal treatment, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2013, vol. 7, no. 5, p. 833.
  21. Ionitovye membrany. Granulyaty. Poroshki: Katalog (Ionite membranes. Granulates. Powders: Catalog), Moscow: NIITEHim, 1977 (in Russian).
  22. Zabolotskii, V.I., Sharafan, M.V., Shel’deshov, N.V., and Lovtsov, E.G., Electric mass transport of sodium chloride through cation-exchange membrane MK-40 in dilute sodium chloride solutions: A rotating membrane disk study, Russ. J. Electrochem., 2008, vol. 44, no. 2, p. 141.
  23. Zabolotskii, V.I., Sharafan, M.V., and Shel’deshov, N.V., Influence of the nature of membrane ionogenic groups on water dissociation and electrolyte ion transport: A rotating membrane disk study, Russ. J. Electrochem., 2008 vol. 44, no. 10, p. 1127.
  24. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physico-chemical hydrodynamics), Moscow: Fizmatgiz, 1959 (in Russian).
  25. Bugakov, V.V., Zabolotsky, V.I., and Sharafan, M.V., Anion-exchange membrane MA-41 surface morphology effect on ion transfer mechanism under identical diffusion layer thickness conditions, Sorbtsionnye Khromatogr. Protsessy, 2010, vol. 10, no. 6, p. 870.
  26. Kharkats, Yu.I., On the mechanism of the overlimiting current at the interface between ion–exchange membrane and electrolyte, Sov. Electrochem., 1985, vol. 21, no. 7, p. 917.
  27. Jackson, M.B., Cyclopolymerization. XI. Polyelectrolytes and polyampholytes from N-alkyl-N,N-diallylamines and methacrylamide, J. Macromol. Sci., 1976, vol. 10, no. 5, p. 959.
  28. Zabolotsky, V.I., Nikonenko, V.V., Pismenskaya, N.D., Laktionov, E.V., Urtenov, M.Kh., Strathmann, H., Wessling, M., and Koops, G.H., Coupled transport phenomena in overlimiting current electrodialysis, Sep. Purif. Technol., 1998, vol. 14, p. 255.
  29. Akberova, E.M. and Malykhin, M.D., Structural and physicochemical characteristics of the anion-exchange membranes MA-40 and MA-41 after thermochemical treatment, Sorbtsionnye Khromatogr. Protsessy, 2014, vol. 14, no. 2, p. 232.