Examples



mdbootstrap.com



 
Статья
2022

Quantum Chemical Calculation on the Decomposition Mechanism of Na3AlF6


Yifan ZhangYifan Zhang, Xianwei HuXianwei Hu, Ming LinMing Lin, Aimin LiuAimin Liu, Zhongning ShiZhongning Shi, Zhaowen WangZhaowen Wang
Российский журнал физической химии А
https://doi.org/10.1134/S0036024422050302
Abstract / Full Text

Quantum chemical calculation was performed to study the decomposition mechanism and the optimized structure of Na3AlF6 at the density functional theory (DFT). To elucidate the structural properties of the optimized Na3AlF6, the Mayer bond order (MBO) was systematically calculated. Four decomposition pathways of Na3AlF6 are determined, mainly including direct dissociation reactions and reactions with transition states. Various structure of [AlF5]2– complex ions are confirmed in the Na3AlF6 decomposition process, and trigonal bipyramidal and tetragonal pyramidal structures of [AlF5]2– complex are verified in the reactions with transition state and Al1–F2 bond-breaking reaction, respectively. The Raman shift values of the calculated main bands in the Raman spectra of Al–F complexes are in good agreement with the experimental values of the main Raman bands for molten cryolite. This result constructs a detailed decomposition scheme of Na3AlF6 and provides a theoretical basis for the investigation of its ionic structure.

Author information
  • Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, 110819, Shenyang, ChinaYifan Zhang, Xianwei Hu, Ming Lin, Aimin Liu, Zhongning Shi & Zhaowen Wang
  • School of Metallurgy, Northeastern University, 110819, Shenyang, ChinaYifan Zhang, Xianwei Hu, Ming Lin, Aimin Liu & Zhaowen Wang
  • State Key Laboratory of Rolling and Automation, Northeastern University, 110819, Shenyang, ChinaZhongning Shi
References
  1. B. J. Welch, J. Mater. 51, 24 (1999).
  2. J. W. Evans, J. Mater. 59, 30 (2007).
  3. V. N. Nekrasov, A. V. Suzdaltsev, O. V. Limanovskaya, et al., Electrochim. Acta 75, 296 (2012).
  4. G. Brooks, M. Cooksey, G. Wellwood, et al., Trans. Inst. Min. Metall., Sect. C 116, 25 (2007).
  5. S. Cikit, Z. Akdeniz, and P. A. Madden, J. Phys. Chem. B 118, 1064 (2014).
  6. E. Robert, J. E. Olsen, V. Danek, et al., J. Phys. Chem. B 101, 9447 (1997).
  7. M. H. Brooker, R. W. Berg, J. H. von Barner, et al., Inorg. Chem. 39, 3682 (2000).
  8. F. Auguste, O. Tkatcheva, and H. Mediaas, et al., Inorg. Chem. 42, 6338 (2003).
  9. X.-W. Hu, J.-Y. Qu, Z.-W. Wang, et al., Trans. Nonferr. Met. Soc. China 21, 402 (2011).
  10. M. Lin, X. Hu, Z. Wang, et al., J. Mater. 72, 278 (2020).
  11. E. Robert, V. Lacassagne, J.-P. Couyures, et al., Inorg. Chem. 38, 214 (1999).
  12. V. Lacassagne, C. Bessada, D. Massiot, et al., J. Phys. Chem. B 106, 1862 (2002).
  13. K. Machado, D. Zanghi, C. Bessada, et al., J. Phys. Chem. C 121, 10289 (2017).
  14. B. Gilbert and T. Materne, Appl. Spectrosc. 44, 299 (1990).
  15. E. Robert, T. Materne, and B. Gilbert, Vibr. Spectrosc. 6, 71 (1993).
  16. M. Liška, P. Perichta, and L. T. Nagy, J. Non-Cryst. Solids 192, 309 (1995).
  17. Z. Akdeniz, Z. Çiçek, M. P. Tosi, et al., Mod. Phys. Lett. B 12, 995 (1998).
  18. M. J. Castiglione, M. Wilson, P. A. Madden, et al., Phys. Chem. Chem. Phys. 1, 165 (1999).
  19. X. Lv, Z. Xu, J. Li, et al., J. Fluorine Chem. 185, 42 (2016).
  20. X. Lv, Z. Xu, J. Li, et al., J. Mol. Struct. 1117, 105 (2016).
  21. X. Lv, Z. Han, H. Zhang, et al., Phys. Chem. Chem. Phys. 21, 7474 (2019).
  22. H. O. Nam, A. Bengtso, K. Vörtler, et al., J. Nucl. Mater. 449, 148 (2014).
  23. H. Guo, J. Li, H. Zhang, et al., Chem. Phys. Lett. 730, 587 (2019).
  24. S. Cikit, Z. Akdeniz, and P. A. Madden, J. Phys. Chem. B 118, 1064 (2014).
  25. T. Bučko and F. Šimko, J. Chem. Phys. 144, 064502 (2016).
  26. T. Bučko and F. Šimko, J. Chem. Phys. 148, 064501 (2018).
  27. Y. Shao, L. Molnar, Y. Jung, et al., Phys. Chem. Chem. Phys. 8, 3172 (2006).
  28. G. S. Picard, F. C. Bouyer, M. Leroy, et al., J. Mol. Struct.: Theochem 368, 67 (1996).
  29. U. Groß, D. Müeller, and E. Kemnitz, Angew. Chem. Int. Ed. 42, 2626 (2003).
  30. J.-L. You, G.-C. Jiang, H.-Y. Hou, et al., J. Raman Spectrosc. 36, 237 (2005).
  31. V. Yu. Buz’ko, G. Yu. Chuiko, and Kh. B. Kushkhov, Russ. J. Inorg. Chem. 57, 62 (2012).
  32. F. Xu, K. Matsumoto, and R. Hagiwara, Dalton Trans. 42, 1965 (2013).
  33. N. Ma, J. You, L. Lu, et al., Materials 11, 1846 (2018).
  34. R. R. Nazmutdinov, T. T. Zinkicheva, S. Yu. Vassiliev, et al., Spectrochim. Acta, Part A 75, 1244 (2010).
  35. R. R. Nazmutdinov, T. T. Zinkicheva, S. Yu. Vassiliev, et al., Chem. Phys. 412, 22 (2013).
  36. Z. Zhao, Z. Li, Q. Wang, et al., Res. Chem. Intermed. 41, 8471 (2015).
  37. Y. Fu, X. Wang, X. Li, et al., AIP Adv. 6, 085305 (2016).
  38. P.-P. Zhao, Y.-C. Wang, Y.-M. Jia, et al., Struct. Chem. 29, 1449 (2018).
  39. Y. Fu, A. Yang, X. Wang, et al., J. Phys. D: Appl. Phys. 52, 245203 (2019).
  40. M. J. Frisch, G. W. Trucks, D. J. Fox, et al., Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford, CT, 2009).
  41. C. Y. Legault, CYLview, 1.0b (Univ. Sherbrooke, 2009). http://www.cylview.org
  42. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).
  43. R. C. Binning, Jr. and L. A. Curtiss, J. Comp. Chem. 11, 1206 (1990).
  44. I. Mayer, Chem. Phys. Lett. 97, 270 (1983).
  45. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).
  46. S. Grimme, J. Chem. Phys. 124, 034108 (2006).
  47. T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007).
  48. A. Schäefer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).
  49. T. Clark, J. Chrasekhar, G. W. Spitznagel, et al., J. Comput. Chem. 4, 294 (1983).
  50. D. Michalska and R. Wysokiński, Chem. Phys. Lett. 403, 211 (2005).
  51. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).
  52. T. Lu and F. Chen, J. Mol. Graph. Modell. 38, 314 (2012).
  53. C. Lefebvre, G. Rubez, H. Khartabil, et al., Phys. Chem. Chem. Phys. 19, 17928 (2017).
  54. X. Hu, B. Li, J. Yu, et al., Characterization of Minerals, Metals, and Materials (Cham, Springer, 2019).
  55. F. Bouyer, G. Picard, and J.-J. Legendre, Int. J. Quantum Chem. 61, 507 (1997).
  56. A. J. Bridgeman, G. Cavigliasso, L. R. Ireland, et al., J. Chem. Soc., Dalton Trans. 14, 2095 (2001).
  57. J. S. Murray and P. Politzer, Electrostatic Potentials: Chemical Applications. Encyclopedia of Computational Chemistry (West Sussex, Wiley, 1998).
  58. J. S. Murry and P. Politzer, WIREs Comput. Mol. Sci. 1, 153 (2011).