Examples



mdbootstrap.com



 
Статья
2020

Behavior of the Sewage Sludge Ash under the Conditions of High-Temperature Processing


M. V. TsvetkovM. V. Tsvetkov, D. N. PodlesniyD. N. Podlesniy, V. M. FreymanV. M. Freyman, Yu. Yu. TsvetkovaYu. Yu. Tsvetkova, M. V. SalganskayaM. V. Salganskaya, I. V. ZyukinI. V. Zyukin, A. Yu. ZaichenkoA. Yu. Zaichenko, E. A. SalganskyE. A. Salgansky
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220060154
Abstract / Full Text

The sewage sludge and the chemical composition of its ash were characterized experimentally. Mineral compounds of the ash were studied by X-ray microanalysis, X-ray diffraction, and IR spectroscopy. The fusion temperatures of the sewage sludge ash were determined by the cone method. The main parameters of the slag formation (base to acid ratio, slag viscosity index, and fouling index) were calculated. The ash contains large amounts of P2O5, CaO, SiO2, and Fe2O3. Thermodynamic calculations show that large amounts of Ca3(PO4)2 and CaSiO3, significant amount of Fe2O3, and small amounts of MgSiO3, Al2O3, and SiO2 are observed in the temperature interval 600–1400°С. The sewage sludge ash tends to slagging and fouling on the reactor walls.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432, Moscow oblast, RussiaM. V. Tsvetkov, D. N. Podlesniy, V. M. Freyman, Yu. Yu. Tsvetkova, M. V. Salganskaya, I. V. Zyukin, A. Yu. Zaichenko & E. A. Salgansky
  • Moscow State University, 119991, Moscow, RussiaV. M. Freyman, M. V. Salganskaya & I. V. Zyukin
References
  1. Werther, J. and Ogada, T., Prog. Energy Combust. Sci., 1999, vol. 25, no. 1, pp. 55–116. https://doi.org/10.1016/S0360-1285(98)00020-3
  2. Syed-Hassan, S.S.A., Wang, Y., Hu, S., Su, S., and Xiang, J., Renew. Sustain. Energy Rev., 2017, vol. 80, pp. 888–913. https://doi.org/10.1016/j.rser.2017.05.262
  3. Samolada, M.C. and Zabaniotou, A.A., Waste Manag., 2014, vol. 34, no. 2, pp. 411–420. https://doi.org/10.1016/j.wasman.2013.11.003
  4. Piasta, W. and Lukawska, M., Procedia Eng., 2016, vol. 161, pp. 1018–1024. https://doi.org/10.1016/j.proeng.2016.08.842
  5. Atienza-Martínez, M., Fonts, I., Ábrego, J., Ceamanos, J., and Gea, G., Chem. Eng. J., 2013, vol. 222, pp. 534–545. https://doi.org/10.1016/j.cej.2013.02.075
  6. Fytili, D. and Zabaniotou, A., Renew. Sust. Energy Rev., 2008, vol. 12, no. 1, pp. 116–140. https://doi.org/10.1016/j.rser.2006.05.014
  7. Wzorek, M., Fuel Process. Technol., 2012, vol. 104, pp. 80–89. https://doi.org/10.1016/j.fuproc.2012.04.023
  8. Jayaraman, K. and Gökalp, I., Energy Convers. Manag., 2015, vol. 89, pp. 83–91. https://doi.org/10.1016/j.enconman.2014.09.058
  9. Suárez-Ruiz, I., Diez, M.A., and Rubiera, F., New Trends in Coal Conversion: Combustion, Gasification, Emissions, and Coking, Elsevier, 2019, pp. 1–30. https://doi.org/10.1016/C2016-0-04039-1
  10. Toledo, M., Ripoll, N., Céspedes, J., Zbogar-Rasic, A., Fedorova, N., Jovicic, V., and Delgado, A., Energy Convers. Manag., 2018, vol. 172, pp. 381–390. https://doi.org/10.1016/j.enconman.2018.07.046
  11. Zaichenko, A.Yu., Zhirnov, A.A., Manelis, G.B., Polianchik, E.V., and Zholudev, A.F., Theor. Found. Chem. Eng., 2010, vol. 44, no. 1, pp. 30–35. https://doi.org/10.1134/S0040579510010045
  12. Miroshnichenko, T.P., Lutsenko, N.A., and Levin, V.A., J. Appl. Mech. Tech. Phys., 2015, vol. 56, no. 5, pp. 864–869. https://doi.org/10.1134/S0021894415050132
  13. Dmitrienko, M.A., Nyashina, G.S., and Strizhak, P.A., J. Clean. Prod., 2018, vol. 177, pp. 284–301. https://doi.org/10.1016/j.jclepro.2017.12.254
  14. Kislov, V.M., Glazov, S.V., Salgansky, E.A., Kolesnikova, Yu.Yu., and Salganskaya, M.V., Combust. Explos. Shock Waves, 2016, vol. 52, no. 3, pp. 320–325. https://doi.org/10.1134/S0010508216030102
  15. Toledo, M., Rosales, C., Silvestre, C., and Caro, S., Int. J. Hydrogen Energy, 2016, vol. 41, no. 46, pp. 21131–21139. https://doi.org/10.1016/j.ijhydene.2016.09.120
  16. Zaichenko, A.Y., Podlesniy, D.N., Tsvetkov, M.V., Salganskaya, M.V., and Chub, A.V., Russ. J. Appl. Chem., 2019, vol. 92, no. 2, pp. 276–281. https://doi.org/10.1134/S1070427219020162
  17. Tsvetkov, M.V., Zyukin, I.V., Freiman, V.M., Salganskaya, M.V., and Tsvetkova, Y.Y., Russ. J. Appl. Chem., 2017, vol. 90, no. 10, pp. 1706–1711. https://doi.org/10.1134/S1070427217100226
  18. Trusov, B.G., III Mezhdunarodnyi simpozium “Gorenie i plazmokhimiya” (III Int. Symp. “Combustion and Plasma Chemistry”), Almaty: Kaz. Nats. Univ., 2005, pp. 24–26.
  19. Magdziarz, A., Wilk, M., Gajek, M., Nowak-Woźny, D., Kopia, A., Kalemba-Rec, I., and Koziński, J.A., Energy, 2016, vol. 113, pp. 85–94. https://doi.org/10.1016/j.energy.2016.07.029
  20. Niu, Y., Tan, H., and Hui, S., Prog. Energy Combust. Sci., 2016, vol. 52, pp. 1–61. https://doi.org/10.1016/j.pecs.2015.09.003
  21. Saikia, B.J. and Parthasarathy, G., J. Modern Phys., 2010, vol. 1, no. 4, pp. 206–210. https://doi.org/10.4236/jmp.2010.14031
  22. Burgina, E.B., Kustova, G.N., Tsybulya, S.V., Kryukova, G.N., Litvak, G.S., Isupova, L.A., and Sadykov, V.A., J. Struct. Chem., 2000, vol. 41, no. 3, pp. 396–402. https://doi.org/10.1007/BF02741997