Статья
2019

Measurements and Analysis of Electrochemical Noise of Li-Ion Battery


E. A. Astafev E. A. Astafev
Российский электрохимический журнал
https://doi.org/10.1134/S102319351906003X
Abstract / Full Text

Electrochemical noise of Li-ion rechargeable battery was measured during its discharging via a constant-value resistor. Statistical analysis of the measured noise was carried out; its standard deviation, skewness, and kurtosis are evaluated. Dependencies of these quantities on the battery state of discharge are obtained. Frequency dependencies of the electrochemical noise power spectral density are calculated using Fourier-transform analysis. The obtained spectra were shown to possess classical fractional-power frequency dependence (1/f) over the investigated frequency band (10–1000 Hz). The dependency of the spectra slope on the battery state of discharge is elucidated. The spectra parameters are shown to change abruptly for a fully discharged battery. At that, the spectral density full level increased, as well as the frequency-dependence power.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    E. A. Astafev

References
  1. Astafev, E.A., Lyskov, N.V., and Gerasimova, E.V., Research of polymer electrolyte fuel cell cathodes by electrochemical techniques, Al’ternativnaya Energetika Ekologiya (in Russian), 2009, no. 8, p. 93.
  2. Astafiev, E.A. and Dobrovolsky, Yu.A., The behavior of membrane-electrode units of polymeric fuel cells: electrochemical methods to study catalytic activity and corrosion resistance of electrodes, Al’ternativnaya Energetika Ekologiya (in Russian), 2007, no. 12, p. 72.
  3. Ukshe, A.E., Chikin, A.I., Bukun, N.G., and Astafiev, E.A., Low-signal electrochemical methods for testing of electrochemical power sources in situ, Al’ternativnaia Energetika Ekologiya (in Russian), 2010, no. 11, p. 117.
  4. Denisov, E., Nigmatullin, R., Evdokimov, Yu., and Timergalina, G., Lithium battery transient response as a diagnostic tool, J. Electron. Mater., 2018, vol. 47, p. 4493. https://doi.org/10.1007/s11664-018-6346-y
  5. Kanevskii, L.S., Special features of discharge characteristics of different types of lithium-thionyl chloride cells and the problem of their diagnostics, Russ. J. Electrochem., 2009, vol. 45, p. 835. https://doi.org/10.1134/S1023193509080011
  6. Lukovtsev, V.P., Rotenberg, Z.A., Dribinskii, A.V., Maksimov, E.M., and Ur’ev, V.N., Estimating depth of discharge of lithium- thionyl chloride batteries from their impedance characteristics, Russ. J. Electrochem., 2005, vol. 41, p. 1097. https://doi.org/10.1007/s11175-005-0187-8
  7. Knott, K.F., Measurement of battery noise and resistor-current noise at subaudio frequencies, Electron. Lett., 1965, vol. l, p. 132.https://doi.org/10.1049/el:19650123
  8. Martinet, S., Durand, R., Ozil, P., Leblanc, P., and Blanchard, P., Application of electrochemical noise analysis to the study of batteries: state-of-charge determination and overcharge detection, J. Power Sources, 1999, vol. 83, p. 93. https://doi.org/10.1016/S0378-7753(99)00272-4
  9. Baert, D.H.J. and Vervaet, A.A.K., Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 2003, vol. 114, p. 357. https://doi.org/10.1016/S0378-7753(02)00599-2
  10. Huet, F., Nogueira, R.P., Lailler, P., and Torcheux, L., Investigation of the high-frequency resistance of a lead-acid battery, J. Power Sources, 2006, vol. 158, p. 1012. https://doi.org/10.1016/j.jpowsour.2005.11.026
  11. Astafev, E.A., Ukshe, A.E., Manzhos, R.A., Dobrovolsky, Yu.A., Lalceev, S.G., and Timashev, S.F., Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1742. https://doi.org/10.20964/2017.03.56
  12. Astafev, E.A., Ukshe, A.E., Gerasimova, E.V., Dobrovolsky, Yu.A., and Manzhos, R.A., Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads, J. Solid State Electrochem., 2018, vol. 22, p. 1839. https://doi.org/10.1007/sl0008-018-3892-4
  13. Astafev, E.A., Electrochemical noise measurement of polymer membrane fuel cell under load, Russ. J. Electrochem., 2018, vol. 54, p. 554. https://doi.org/10.1134/S1023193518060034
  14. Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., Measurement of electrochemical noise of a Li/MnO2 primary lithium battery, J. Solid State Electrochem., 2018, vol. 22, p. 3597. https://doi.org/10.1007/sl0008-018-4074-0
  15. Astafev, E.A., Electrochemical noise measurement of a Li/SOCl2 primary battery, J. Solid State Electrochem., 2018, vol. 22, p. 3569. https://doi.org/10.1007/sl0008-018-4067-z
  16. Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., The model of electrochemical noise of a hydrogen–air fuel cell, J. Electrochem. Soc., 2018, vol. 165, p. F604. https://doi.org/10.1149/2.0251809jes
  17. Martemianov, S., Adiutantov, N., Evdokimov, Yu.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 2803. https://doi.org/10.1007/sl0008-015-2855-2
  18. Martemianov, S., Maillard, F., Thomas, A., Lagonotte, P., and Madier, L., Noise diagnosis of commercial Li-ion batteries using high-order moments, Russ. J. Electrochem., 2016, vol. 52, p. 1122. https://doi.org/10.1134/S1023193516120089
  19. Bertocci, U. and Huet, F., Noise analysis applied to electrochemical systems, Corrosion, 1995, vol. 51, p. 131. https://doi.org/10.5006/1.3293585
  20. Cottis, R.A., Al-Awadhi, M.A.A., Al-Mazeedi, H., and Turgoose, S., Measures for the detection of localized corrosion with electrochemical noise, Electrochim. Acta, 2001, vol. 46, p. 3665. https://doi.org/10.1016/S0013-4686(01)00645-4
  21. Al-Mazeedi, H.A.A. and Cottis, R.A., A practical evaluation of electrochemical noise parameters as indicators of corrosion type, Electrochim. Acta, 2004, vol. 49, p. 2787. https://doi.org/10.1016/j.electacta.2004.01.040
  22. Cottis, R.A., Interpretation of electrochemical noise data, Corrosion, 2001, vol. 57, no. 3, p. 265.
  23. Astafev, E.A., Electrochemical Noise Measurement Methodologies of Chemical Power Sources, Instr. Sci. Tech, 2019, vol. 47, p. 233. https://doi.org/10.1080/10739149.2018.1521423
  24. Astafev, E.A., Low-noise wide-frequency band instrument for electrochemical noise of chemical power sources measurement, Pribory Tekhnika Eksperimenta (in Russian), 2019, no. 1, p. 141. https://doi.org/10.1134/S0032816219010038
  25. Ritter, S., Ehiet, F., and Cottis, R.A., Guideline for an assessment of electrochemical noise measurement devices, Mat. Corr., 2012, vol. 63, p. 297. https://doi.org/10.1002/maco.201005839
  26. Astafev, E.A., Ukshe, A.E., Leonova, L.S., Manzhos, R.A., and Dobrovolsky, Yu.A., Detrending and Other Features of Data Processing in the Measurements of Electrochemical Noise, Russ. J. Electrochem., 2018, vol. 54, no. 12. p. 1117. https://doi.org/10.1134/S1023193518120030
  27. Kanevskii, L.S., Special features of discharge characteristics of different types of lithium-thionyl chloride cells and the problem of their diagnostics, Russ. J. Electrochem., 2009, vol. 45, no. 8, p. 835. https://doi.org/10.1134/S1023193509080011
  28. Astafev, E.A., Software and instrumentation methods of resolution enhancement in electrochemical noise measurement, Russ. J. Electrochem., 2018, vol. 54, no. 11, p. 1034. https://doi.org/10.1134/S0424857018130078
  29. Tyagai, V.A., Noise in electrochemical systems, Elektrokhimiya (in Russian), 1974, vol. 10, p. 3.
  30. Tyagai, V.A. and Luk’yanchilcova, N.B., Equilibrium fluctuations in electrochemical processes, Elektrokhimiya (in Russian), 1967, vol. 3, p. 316.
  31. Singh, P.S., and Lemay, S.G., Stochastic processes in electrochemistry, Anal. Chem., 2016, vol. 88, p. 5017.https://doi.org/10.1021/acs.analchem.6b00683
  32. Barker, G.C., Faradaic reaction noise, J. Electroanal. Chem., 1977, vol. 82, p.145.
  33. Barker, G.C., Large signal aperiodic equivalent electrical circuits for diffusion and faradaic impedances, J. Electroanal. Chem., 1975, vol. 58, p. 5.
  34. Astafev, E.A., Comparing the method and hardware for electrochemical impedance with the method of measuring and analyzing electrochemical noise, Russ. J. Electrochem., 2018, vol. 54, no. 11, p. 1022. https://doi.org/10.1134/S0424857018130066
  35. Astafev, E.A., Frequency Characteristics of Hydrogen-Air Fuel Cell Electrochemical Noise, Fuel Cells, 2018, vol. 18, p. 755. https://doi.org/10.1002/fuce.201800102