Single SOFC with Supporting Ni-YSZ Anode, Bilayer YSZ/GDC Film Electrolyte, and La2NiO4 + δ Cathode

A. N. Koval’chuk A. N. Koval’chuk , A. V. Kuz’min A. V. Kuz’min , D. A. Osinkin D. A. Osinkin , A. S. Farlenkov A. S. Farlenkov , A. A. Solov’ev A. A. Solov’ev , A. V. Shipilova A. V. Shipilova , I. V. Ionov I. V. Ionov , N. M. Bogdanovich N. M. Bogdanovich , S. M. Beresnev S. M. Beresnev
Российский электрохимический журнал
Abstract / Full Text

Characteristics of fuel cells with supporting Ni-YSZ anode, bilayer YSZ/GDC electrolyte with the thickness of 10 μm, and La2NiO4 + δ cathode are studied. It is shown that when humid (3% water) hydrogen is supplied to the anode and air is supplied to the cathode, the maximum values of cell’s power density are 1.05 and 0.75 W/cm2 at 900 and 800°С, respectively. After the introduction of praseodymium oxide and ceria into the cathode and the anode, respectively, the power density is ca. 1 W/cm2 at 700°С. It is found that the power density of a cell with impregnated electrodes weakly increases with the increase in temperature to ca. 1.4 W/cm2 at 900°С. The analysis of impedance spectra by the distribution of relaxation times shows that such behavior is associated with the gas-diffusion resistance of the SOFC anode. The latter is explained by the low porosity of the anode and the high rate of fuel consumption.

Author information
  • Tomsk Polytechnical University, Tomsk, 634050, Russia

    A. N. Koval’chuk, A. A. Solov’ev & I. V. Ionov

  • Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    A. V. Kuz’min, D. A. Osinkin, A. S. Farlenkov, N. M. Bogdanovich & S. M. Beresnev

  • Ural Federal University named after the First President of Russia B.N. Yeltsyn, Yekaterinburg, 620002, Russia

    A. V. Kuz’min, D. A. Osinkin & A. S. Farlenkov

  • Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, 634055, Russia

    A. A. Solov’ev, A. V. Shipilova & I. V. Ionov

  1. Shin, T.H., Shin, M., Park, G., Lee, S., Woo, S., and Yu, J., Fabrication and characterization of oxide ion conducting films, Zr1 †xMxO2 †δ (M = Y, Sc) on porous SOFC anodes, prepared by electron beam physical vapor deposition, Sustainable Energy Fuels, 2017, vol. 1, p. 103.
  2. Solovyev, A.A., Rabotkin, S.V., Ionov, I.V., Shipilova, A.V., Kovalchuk, A.N., and Borduleva, A.O., Bias-assisted magnetron sputtering of yttria-stabilised zirconia thin film, J. Phys.: Conf. Ser., 2014, vol. 552, no. 1, Article number 012010.
  3. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. I. Performance-determining factors, J. Solid State Electrochem., 2008, vol. 12, p. 1039.
  4. Osinkin, D.A., Bogdanovich, N.M., Beresnev, S.M., and Zhuravlev, V.D., High-performance anode-supported solid oxide fuel cell with impregnated electrodes, J. Power Source, 2015, vol. 288, p. 20.
  5. Kurteeva, A.A., Beresnev, S.M., Osinkin, D.A., Kuzin, B.L., Vdovin, G.K., Zhuravlev, V.D., Bogdanovich, N.M., Bronin, D.I., Pankratov, A.A., and Yaroslavtsev, I.Yu., Single solid-oxide fuel cells with supporting Ni-cermet anode, Russ. J. Electrochem., 2011, vol. 47, no. 12, p. 1381.
  6. Pikalova, E.Yu., Bogdanovich, N.M., Kolchugin, A.A., Osinkin, D.A., and Bronin, D.I., Electrical and electrochemical properties of La2NiO4 + δ-based cathodes in contact with Ce0.8Sm0.2O2 †δ electrolyte, Procedia Eng., 2014, vol. 98, p. 105.
  7. Pikalova, E.Yu., Bogdanovich, N.M., Kolchugin, A.A., Ananyev, M.V., and Pankratov, A.A., Influence of the synthesis method on the electrochemical properties of bilayer electrodes based on La2NiO4 + δ and LaNi0.6Fe0.4O3 †δ, Solid State Ionics, 2016, vol. 288, p. 36.
  8. Ananyev, M.V, Tropin, E.S., Eremin, V.A., Farlenkov, A.S., Smirnov, A.S., Kolchugin, A.A., Porotnikova, N.M., Khodimchuk, A.V., Berenov, A.V., and Kurumchin, E.Kh., Oxygen isotope exchange in La2NiO 4 ± δ, Phys. Chem. Chem. Phys., 2016, vol. 18, p. 9102.
  9. Fergus, J., Hui, R., Li, X., Wilkinson, D.P., and Zhang, J., Solid Oxide Fuel Cells: Materials Properties and Performance, New York: CRC Press, 2008.
  10. Solovyev, A.A., Shipilova, A.V., Ionov, I.V., Kovalchuk, A.N., Rabotkin, S.V., and Oskirko, V.O., Magnetron-sputtered YSZ and CGO electrolytes for SOFC, J. Electron. Mater., 2016, vol. 45, no. 8, p. 3921.
  11. Beresnev, S.M., Bobrenok, O.F., Kuzin, B.L., Bogdanovich, N.M., Kurteeva, A.A., Osinkin, D.A., Vdovin, G.K., and Bronin, D.I., Single fuel cell with supported LSM-cathode, Russ. J. Electrochem., 2012, vol. 48, no. 10, p. 969.
  12. Gavrilyuk, A.L., Osinkin, D.A., and Bronin, D.I., The use of Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy, Russ. J. Electrochem., 2017, vol. 53, no. 6, p. 575.
  13. Osinkin, D.A., Kuzin, B.L., and Bogdanovich, N.M., Gas diffusion hindrances on Ni-cermet anode in contact with Zr0.84Y0.16O1.92 solid electrolyte, Russ. J. Electrochem., 2009, vol. 45, no. 4, p. 483.
  14. Boukamp, B.A., Fourier transform distribution function of relaxation times; application and limitations, Electrochim. Acta, 2015, vol. 154, p. 35.
  15. Saccoccio, M., Wan, T.H., Chen, C., and Ciucci, F., Optimal regularization in distribution of relaxation times applied to electrochemical impedance spectroscopy: ridge and lasso regression methods—a theoretical and experimental study, Electrochim. Acta, 2014, vol. 147, p. 470.
  16. Osinkin, D.A., Bogdanovich, N.M., and Gavrilyuk, A.L., Rate determining steps of fuel oxidation over CeO2 impregnated Ni-YSZ in H2 + H2O + CO + CO2 ambient, Electrochim. Acta, 2016, vol. 199, p. 108.