Examples



mdbootstrap.com



 
Статья
2018

Stochastic Electrochemical Approach to Detecting Microseismic Noise Fields


A. Yu. TsivadzeA. Yu. Tsivadze, Yu. V. SirotinskiiYu. V. Sirotinskii, A. L. KlyuevA. L. Klyuev, M. A. AbaturovM. A. Abaturov, B. M. GrafovB. M. Grafov, S. L. ArutyunovS. L. Arutyunov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518130499
Abstract / Full Text

Low-frequency acoustic equipment for microseismic oil and hydrocarbon 3D-exploration is developed by using equipment produced by ООО NTK Anchar (Moscow, Russia). By using stochastic electrochemical collating calibration and stochastic electrochemical Chebyshev spectroscopy, the Anchar equipment noise properties are studied in the Russian Arctic zone of Kola Peninsula, under the conditions of rather low natural microseismic noise. The Anchar equipment’s intrinsic noise turned out to be an order of magnitude lower than the microseismic noise. This means that the Anchar equipment can be used for the 3D-detection of microseismic noise fields in oil and gas fields in the Russian Arctic zone.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, RussiaA. Yu. Tsivadze, Yu. V. Sirotinskii, A. L. Klyuev, M. A. Abaturov & B. M. Grafov
  • ООО NTK Anchar, Moscow, 117418, RussiaYu. V. Sirotinskii & S. L. Arutyunov
References
  1. Gillespie, D.T., Hellander, A., and Petzold, L.R., Perspective: Stochastic algorithms for chemical kinetics, J. Chem. Phys. 2013, vol. 138, p. 170901.
  2. Tsivadze A.Y., Promising method of searching for oil and gas, Herald of the Russian Academy of Sciences, 2014, vol. 84, No 2, p. 142.
  3. Arutyunov, S.L., Grafov, B.M., and Sirotinskii, Yu.V., ANCHAR—a Unique Search Technology of Oil and Gas Fields, Geoinformatika (in Russian), 1998, no. 3, p. 12.
  4. Chebotariova, I.Ya., Structure and dynamics of geological environment in the seismic noise fields, methods and experimental results, Ezhegodnik RAO (in Russian), 2011, no. 12, p. 147.
  5. Lambert, M.A., Schmalholz, S.M., Saenger E.H., and Steiner, B., Low-frequency microtremor anomalies at an oil and gas field in Voitsdorf, Austria, Geophysical Prospecting, 2009, vol. 57, p. 393.
  6. Castagna, J.P., Sun, S., and Siegfried, R.W., Detection of low-frequency shadows associated with hydrocarbons, The Leading Edge, 2003, vol. 22, p. 120.
  7. Arutyunov, S.L., The success rate of the forecast of oil and gas in the ANCHAR technology, Tehnologiya seismorazvedki (in Russian), 2010, no. 1, p. 52.
  8. Arutyunov, S.L., Sirotinskii, Yu.V., and Suntsov, A.E., The Current State of Technology Search and Monitoring of Hydrocarbon Deposits ANCHAR. The Results of the Last Years, Pribory i sistemy razvedochnoj geofiziki (in Russian), 2014, no. 3, p. 43.
  9. Sirotinskii, Yu.V., Suntsov, A.E., and Arutyunov, S.L., Microseismic noise oil forecast for little-studied areas of the Arctic, Neftegaz. RU (in Russian), 2015, no. 3, p. 74.
  10. Grafov, B.M., Influence of periodic hydrodynamic flow on the limiting diffusion current, Sov. Electrochem., 1968, vol. 4, p. 480.
  11. Aksenovich, G.I., Gal’perin, E.I., Grafov, B.M., Lukovcev, P.D., Novickij, M.A., Sirotinskij, Yu.V., and Sokolov, L.A., Electrochemical seismic sensor and advanced testing, Izvestiya of the Academy of Sciences of the USSR. Physics of the Solid Earth (in Russian), 1970, no. 5, p. 81.
  12. Sirotinskii, Yu.V., Arutyunov, S.L., Grafov, B.M., and Suntsov, A.E., Comparative Calibration of Electrochemical Geophones in the Acoustic Low-Frequency Oil and Gas Prospecting, Russ. J. Electrochem., 1999, vol. 35, p. 596.
  13. Grafov, B.M., Dobrovol’skii, Y.A., Davydov, A.D., Ukshe, A.E., Klyuev, A.L., and Astaf’ev, E.A., Electrochemical Noise Diagnostics: Analysis of Algorithm of Orthogonal Expansions, Russ. J. Electrochem., 2015, vol. 51, p. 503.
  14. Nikiforov, A.F., Suslov, S.K., and Uvarov, V.B., Classical Orthogonal Polynomials of a Discrete Variable (in Russian), Moscow: Nauka, 1985.
  15. Callen, H.B. and Welton, T.A., Irreversibility and Generalized Noise, Phys. Rev., 1951, vol. 83, p. 34.