Examples



mdbootstrap.com



 
Статья
2019

Formation and Cathodic Reduction of Taurine Complexes with Zinc and Cobalt(II)


S. N. GridchinS. N. Gridchin, R. F. ShekhanovR. F. Shekhanov
Российский журнал прикладной химии
https://doi.org/10.1134/S107042721909009X
Abstract / Full Text

Stability constants of zinc and cobalt(II) complexes with Taurine were determined at 25°C and ionic strengths of 0.5, 1.0, and 1.5 (KNO3). The thermodynamic stability constants were calculated. The processes in which zinc-cobalt alloys are electrodeposited onto 08kp steel from electrolytes with addition of Taurine and the physicochemical properties of the coatings were examined. It was shown that the ratio between the alloy components affect the chemical composition and microstructure of the coatings. The most homogeneous and finely crystalline structure is observed for zinc-cobalt alloy coatings obtained at a cathode current density of 1 A dm−2 from an electrolyte with zinc concentration twice that of cobalt. At these concentration conditions, zinc-cobalt alloy coatings with 15.1 at % Co were obtained. The kinetic patterns of deposition of zinc-cobalt alloys at temperatures of 25 and 50°C were demonstrated. A relationship between the chemical composition, microstructure, and corrosion rate of the zinc-cobalt coatings obtained was determined.

Author information
  • Ivanovo State University of Chemistry and Technology, Ivanovo, RussiaS. N. Gridchin & R. F. Shekhanov
References
  1. Okulov, V.V., Tsinkovanie. Tekhnika i tekhnologiya (Zinc Plating. Equipment and Technology), Moscow: Globus, 2008, p. 104.
  2. Bajat, J.B., Stevanovic, S.I., and Jokic, B.M., J. Serb. Chem. Soc., 2011, 76, no. 11, pp. 1537–1550. https://doi.org/10.2298JSC110331137B
  3. Schlesinger, M. and Paunovic, M., Modern Electroplating, Hoboken: John Wiley & Sons, Inc., 2010, pp. 285–308.
  4. Vinokurov, E.G. and Bondar', V.V., Model'nye pred-stavleniya dlya opisaniya i prognozirovaniya elektroo-sazhdeniya splavov (Model Concepts for Describing and Prognosticating the Electrodeposition of Alloys), Moscow: VINITI Ross. Akad. Nauk, 2009, pp. 88–136.
  5. Vinokurov, E.G., Russ. J. Appl. Chem., 2010, 83, no. 2, pp. 258–262. https://doi.org/10.1134S1070427210020138
  6. Evreinova, N.V., Shoshina, I.A., Naraev, V.N., and Tikho-nov, K.I., Russ. J. Appl. Chem., 2008, 81, no. 9, pp. 1180–1183. https://doi.org/10.1134S1070427208070100
  7. Taranina, O.A., Evreinova, N.V., Shoshina, I.A., Naraev, V.N., and Tikhonov, K.I., Russ. J. Appl. Chem., 2010, 83, no. 1, pp. 58–61. https://doi.org/10.1134S107042721001012X.
  8. Kamel, M.M., Anwer, Z.M., Abdel-Salam, I.T., and Ibrahim, I.S., Trans. IMF, 2010, 88, no. 4, pp. 191–197. https://doi.org/10.1179002029610X12696136822437
  9. Gharahcheshmeh, M.H. and Sohi, M.H., J. Appl. Electrochem., 2010, 40, pp. 1563–1570. https://doi.org/10.1007s10800-010-0142-6
  10. Ortiz-Aparicio, J.L., Meas, Y., Trejo, G., Ortega, R., Chapman, T.W., Chainet, E., and Ozil, P., J. Appl. Electrochem., 2011, 41, pp. 669–679. https://doi.org/10.1007s10800-011-0279-y
  11. Lacnjevac, U., Jovic, B.M., and Jovic, V.D., J. Electro chem. Soc., 2012, 159, no. 5, pp. D310–D318. https://doi.org/10.11492.042205JES
  12. Krasikov, A.V. and Krasikov, V.L., Russ. J. Appl. Chem., 2012, 85, no. 5, pp. 736–741. https://doi.org/10.1134S1070427212050096)
  13. Hammami, O., Dhouibi, L., Bercot, P., and Rezrazi, E.A., Canad. J. Chem. Eng., 2013, 91, pp. 19–26. https://doi.org/10.1002cjce.21627
  14. Sotskaya N.V., Sapronova, L.V., and Dolgikh, O.V., Russ. J. Electrochem., 2014, 50, no. 12, pp. 1134–1141. https://doi.org/10.1134S1023193514120106
  15. Vidu, R., Perez-Page, M., Quach, D.V., Chen, X.Y., and Stroeve, P., Electroanalysis, 2015, 27, pp. 2845–2856. https://doi.org/10.1002elan.201500247
  16. Shekhanov, R.F., Gridchin, S.N., and Balmasov, A.V., Surf. Eng. Appl. Electrochem., 2016, 52, no. 2, pp. 152–156. https://doi.org/10.3103S1068375516020125
  17. Shekhanov, R.F., Kuz'min, S.M., Balmasov, A.V., and Gridchin, S.N., Russ. J. Electrochem., 2017, 53, no. 11, pp. 1274–1280. https://doi.org/10.1134S1023193517110131
  18. Shekhanov, R.F., Gridchin, S.N., and Balmasov, A.V., Russ. J. Electrochem., 2018, 54, no. 4, pp. 355–362. https://doi.org/10.1134S1023193518040079
  19. Shekhanov, R.F., Gridchin, S.N., and Balmasov, A.V., Prot. Met. Phys. Chem. Surf., 2017, 53, no. 3, pp. 483–487. https://doi.org/10.1134S2070205117030224
  20. Kahoul, A., Azizi, F., and Bouaoud, M., Trans. IMF, 2017, 95, no. 2, pp. 106–113. https://doi.org/10.108000202967.2017.1265766
  21. RF Patent 2 569 618 (publ. 2015).
  22. RF Patent 2 603 526 (publ. 2016).
  23. Gridchin, S.N., Shekhanov, R.F., and Pyreu, D.F., Russ. J. Phys. Chem. A, 2015, 89, no. 2, pp. 341–343. https://doi.org/10.1134S0036024415020120
  24. Gridchin, S.N., J. Anal. Chem., 2007, 62, no. 6, pp. 522–525. https://doi.org/10.1134S1061934807060044
  25. Gridchin, S.N., Russ. J. Phys. Chem. A, 2016, 90, no. 12, pp. 2499–2501. https://doi.org/10.1134S003602441612013X
  26. Gridchin, S.N., Russ. J. Gen. Chem., 2017, 87, no. 12, pp. 2846–2851. https://doi.org/10.1134S1070363217120143
  27. Rozenfel'd, I.L., Korroziya i zashchita metallov (Corrosion and Protection of Metals), Moscow: Metallurgiya, 1969, p. 105.
  28. Borodin, V.A., Kozlovskii, E.V., and Vasil'ev, V.P., Zh. Neorg. Khim., 1986, 31, no. 1, pp. 10–16.
  29. Himmelblau, D.M., Applied Nonlinear Programming, New York: McGraw-Hill Inc., 1972.
  30. Vasil'ev, V.P., Borodin, V.A., and Kozlovskii, E.V., Primenenie EVM v khimiko-analiticheskikh raschetakh (Computers in Chemical Analytical Calculations), Moscow: Vysshaya shkola, 1993, pp. 81–101.
  31. Gridchin, S.N., Shekhanov, R.F., Bychkova, S.A., Konstanty ustoichivosti kompleksov kobal'ta(II) s taurinom i ß-alaninom (Stability constants of cobalt(II) complexes with taurine and ß-alanine), Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2016, 59, no. 3, pp. 95–96.
  32. Nazarenko, V.A., Antonovich, V.P., and Nevskaya, E.M., Gidroliz ionov metallov v razbavlennykh rastvorakh (Hydrolysis of Metal Ions in Dilute Solutions), Moscow: Atomizdat, 1978. p. 46.
  33. Vasil'ev, V.P., Termodinamicheskie svoistva rastvorov elektrolitov (Thermodynamic Properties of Electrolyte Solutions), Moscow: Vysshaya shkola, 1982, p. 267.