Examples



mdbootstrap.com



 
Статья
2019

Transport Properties of MF-4SK Membranes Doped with Sulfonated Zirconia


P. A. Yurova P. A. Yurova , U. S. Aladysheva U. S. Aladysheva , I. A. Stenina I. A. Stenina , A. B. Yaroslavtsev A. B. Yaroslavtsev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519110156
Abstract / Full Text

Composite materials based on homogeneous perfluorinated MF-4SK cation-exchange membranes and sulfonated zirconia are obtained by in situ and casting methods. Their transport properties and gas-permeability are studied. The introduction of sulfonated zirconia leads to increase the room-temperature conductivity of membranes obtained by the in situ and casting methods more than 1.5- and 4-fold, respectively. For composite membranes synthesized by the in situ and casting methods, the transport numbers of anions that characterize their undesired transport decrease more than 1.5-fold (from 0.026 to 0.020 and from 0.020 to 0.014, respectively). For samples based on MF-4SK membranes and zirconia, the considerable (more than 3-fold) decrease in hydrogen permeability is observed. The differences in the observed values of water uptake, conductivity, and interdiffusion coefficients in composite membranes are discussed.

Author information
  • Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia

    P. A. Yurova, I. A. Stenina & A. B. Yaroslavtsev

  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow obtast, Russia

    P. A. Yurova, I. A. Stenina & A. B. Yaroslavtsev

  • Mendeleev University of Chemical Technology, Higher Chemical College, 125047, Moscow, Russia

    U. S. Aladysheva

References
  1. Mauritz, K. and Moore, R., State of understanding of Nafion, Chem. Rev., 2004, vol. 104, p. 4535.
  2. Apel, P.Yu., Bobreshova, O.V., Volkov, A.V., Volkov, V.V., Nikonenko, V.V., Stenina, I.A., Filippov, A.N., Yampolskii, Yu.P., and Yaroslavtsev, A.B., Prospects of membrane science development, Membr. Membr. Technol., 2019, vol. 1, p. 45.
  3. Park, J.-S., Shin, M.-S., and Kim, Ch.-S., Proton exchange membranes for fuel cell operation at low relative humidity and intermediate temperature: An updated review, Curr. Opin. Electrochem., 2017, vol. 5, p. 43.
  4. Bose, S., Kuila, T., Nguyen, T.X.H., Kim, N.H., Lau, K.-T., and Lee, J.H., Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges, Progr. Polym. Sci., 2011, vol. 36, p. 813.
  5. Ji, M. and Wei, Z., A review of water management in polymer electrolyte membrane fuel cells, Energies, 2009, vol. 2, p. 1057.
  6. Shao, Yu., Yin, G., Wang, Zh., and Gao, Yu., Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges, J. Power Sources, 2007, vol. 167, p. 235.
  7. Mugtasimova, K. R., Melnikov, A.P., Galitskaya, E.A., Kashin, A.M., Dobrovolskiy, Yu.A., Don, G.M., Likhomanov, V.S., Sivak, A.V., and Sinitsyn, V.V., Fabrication of Aquivion-type membranes and optimization of their elastic and transport characteristics, Ionics, 2018, vol. 24, p. 3897.
  8. Yaroslavtsev, A.B., Stenina, I.A., Kulova, T.L., Skundin, A.M., and Desyatov, A.V., Nanomaterials for electrical energy storage, in Comprehensive Nanoscience and Nanotechnology, Second edition, Andrews, D.L., Lipson, R.H., and Nann, T., Eds., Vol. 5 Application of Nanoscience, Bradshaw, D.S., Ed., Amsterdam: Elsevier, 2019, p. 165.
  9. Tripathi, B.P. and Shahi, V.K., Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Progr. Polym. Sci., 2011, vol. 36, p. 945.
  10. Yaroslavtsev, A.B. and Yampolskii, Yu.P., Hybrid membranes containing inorganic nanoparticles, Mendeleev Commun., 2014, vol. 24, p. 319.
  11. Bakangura, E., Wu, L., Ge, L., Yang, Zh., and Xu, T., Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives, Progr. Polym. Sci., 2016, vol. 57, p. 103.
  12. The Chemistry of Membranes Used in Fuel Cells: Degradation and Stabilization, Schlick, Sh. Ed., Hoboken: Wiley, 2018.
  13. Shalimov, A.S., Novikova, S.A., Stenina, I.A., and Yaroslavtsev A.B., Ion transport in MF-4SK cation-exchange membranes modified with acid zirconium phosphate, Russ. J. Inorg. Chem. 2006, vol. 51, p. 700.
  14. Alberti, G., Casciola, M., Capitani, D., Donnadio, A., Narducci, R., Pica, M., and Sganappa, M., Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity, Electrochim. Acta, 2007, vol. 52, p. 8125.
  15. Amjadi, M., Rowshanzamir, S., Peighambardoust, S.J., and Sedghi, S., Preparation, characterization and cell performance of durable Nafion/SiO2 hybrid membrane for high-temperature polymeric fuel cells, J. Power Sources, 2012, vol. 210, p. 350.
  16. Amjadi, M., Rowshanzamir, S., Peighambardoust, S.J., Hosseini, M.G., and Eikani, M.H., Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells, Int. J. Hydrogen Energy, 2010, vol. 35, p. 9252.
  17. Ketpang, K., Son, B., Lee, D., and Shanmugam, S., Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions, J. Membr. Sci., 2015, vol. 488, p. 154.
  18. Taghizadeh, M.T. and Vatanparast, M., Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells, J. Colloid Interface Sci., 2016, vol. 483, p. 1.
  19. Siddiqui, S.I. and Chaudhry, S.A. Organic/inorganic and sulfonated zirconia nanocomposite membranes for proton-exchange membrane fuel cells, in Organic-Inorganic Composite Polymer Electrolyte Membranes. Preparation, Properties, and Fuel Cell Applications, Inamuddin, M.A. and Asiri, A.M., Eds., Springer, 2017, p. 219.
  20. Zhai, Y., Zhang, H., Hu, J., and Yi, B., Preparation and characterization of sulfonated zirconia (\({\text{SO}}_{{\text{4}}}^{{{\text{2}} - }}\)/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity, J. Membr. Sci., 2006, vol. 280, p. 148.
  21. Kim, T., Choi, Y.-W., Kim, C.-S., Yang, T.-H., and Kim, M.-N., Sulfonated poly(arylene ether sulfone) membrane containing sulfonated zirconia for high-temperature operation of PEMFCs, J. Mater. Chem., 2011, vol. 21, p. 7612.
  22. Bonis, C., Cozzi, D., Mecheri, B., D’Epifanio, A., Rainer, A., De Porcellinis, D., and Licoccia, S., Effect of filler surface functionalization on the performance of Nafion/titanium oxide composite membranes, Electrochim. Acta, 2014, vol. 147, p. 418.
  23. D’Epifanio, A., Navarra, M.A., Weise, F.Ch., Mecheri, B., Farrington, J., Licoccia, S., and Greenbaum, S., Composite Nafion/sulfonated zirconia membranes: Effect of the filler surface properties on proton transport characteristics, Chem. Mater., 2010, vol. 22, p. 813.
  24. Siracusano, S., Baglio, V., Nicoter, I., Mazzapiod, L., Aricò, A.S., Panero, S., and Navarra, M.A., Sulfonated titania as additive in Nafion membranes for water electrolysis applications, Int. J. Hydrogen Energy, 2017, vol. 42, p. 27851.
  25. Wu, Zh., Sun, G., Jin, W., Hou, H., Wang, S., and Xin, Q., Nafion® and nano-size TiO2\({\text{SO}}_{{\text{4}}}^{{{\text{2}} - }}\) solid superacid composite membrane for direct methanol fuel cell, J. Membr. Sci., 2008, vol. 313, p. 336.
  26. Sayeed, M.D.A., Kim, H.J., Park, Y., Gopalan, A.I., Kim, Y.H., Lee, K.-P., and Choi, S.-J., Sulfonated titania–silica reinforced Nafion® nanocomposite membranes for proton exchange membrane fuel cells, J. Nanosci. Nanotechnol., 2015, vol. 15, p. 7054.
  27. Yurova, P.A., Stenina, I.A., and Yaroslavtsev, A.B., A comparative study of the transport properties of homogeneous and heterogeneous cation-exchange membranes doped with zirconia modified with phosphoric acid groups, Pet. Chem., 2018, vol. 58, p. 1144.
  28. Liu, L., Chen, W., and Li, Yu., A statistical study of proton conduction in Nafion®-based composite membranes: Prediction, filler selection and fabrication methods, J. Membr. Sci., 2018, vol. 549, p. 393.
  29. Stenina, I.A., Voropaeva, E.Yu., Veresov, A.G., Kapustin, G.I., and Yaroslavtsev, A.B., Effect of precipitation pH and heat treatment on the properties of hydrous zirconium dioxide, Russ. J. Inorg. Chem., 2008, vol. 53, p. 350.
  30. Yaroslavtsev, A.B., Karavanova, Yu.A., and Safronova, E.Yu., Ionic conductivity of hybrid membranes, Pet. Chem., 2011, vol. 51, p. 473.
  31. Golubenko, D.V., Yurova, P.A., Karavanova, Yu.A., and Stenina, I.A., Surface modification of zirconia with acid groups, Inorg. Mater., 2017, vol. 53, p. 1053.
  32. Filippov, A.N., Safronova, E.Y., and Yaroslavtsev, A.B., Theoretical and experimental investigation of diffusion permeability of hybrid MF-4SC membranes with silica nanoparticles, J. Membr. Sci., 2014, vol. 471, p. 110.