Статья
2018

Sensitive Detection of Histamine at Metal-Organic Framework (Ni-BTC) Crystals and Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode


Mojtaba Hadi Mojtaba Hadi , Hossein Mostaanzadeh Hossein Mostaanzadeh
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518120066
Abstract / Full Text

In this study a new electrochemical histamine sensor was proposed by using Ni-based metalorganic framework (Ni-BTC, BTC = 1,3,5-benzenetricarboxylate) crystals and multi-walled carbon nanotubes modified glassy carbon electrode. The modified electrode exhibited excellent electrocatalytic activity for the electro-oxidation of histamine with relatively high sensitivity and stability. The electro-oxidation of histamine was irreversible and exhibited an absorption-controlled behavior. A calibration curve for histamine in the concentration range from 1.00 to 160.00 μM with a detection limit of 0.41 μM (at signal to noise 3) and sensitivity of 0.19 μA μM–1 was obtained. The suggested sensor was successfully used for quantitative determination of histamine in spiked human urine samples with satisfactory results.

Author information
  • Department of Chemistry, Faculty of Sciences, University of Qom, Qom, Iran

    Mojtaba Hadi & Hossein Mostaanzadeh

References
  1. Marieb, E., Human Anatomy and Physiology, San Francisco: Benjamin Cummings, 2001.
  2. Bodmer, S., Imark, C., and Kneubühl, M., Biogenic amines in foods: histamine and food processing, Inflammation Res., 1999, vol. 48, p. 296.
  3. Taylor, S.L., Histamine food poisoning: toxicology and clinical aspects, CRC Crit. Rev. Toxicol., 1986, vol. 17, p. 91.
  4. Weng, Q., Xia, F., and Jin, W., Determination of histamine by capillary zone electrophoresis with end-column amperometric detection at a carbon fiber microdisk array electrode, Electroanalysis, 2001, vol. 13, p. 1459.
  5. Garcia-Villar, N., Hernandez-Cassou, S., and Saurina, J., Determination of biogenic amines in wines by pre-column derivatization and high-performance liquid chro-matography coupled to mass spectrometry, J. Chromatogr. A, 2009, vol. 1216, p. 6387.
  6. Dadakova, E., Krizek, M., and Pelikanova, T., Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC), Food Chem., 2009, vol. 116, p. 365.
  7. Pastore, P., Favaro, G., Badocco, D., Tapparo, A., Cavalli, S., and Saccani, G., Determination of biogenic amines in chocolate by ion chromatographic separation and pulsed integrated amperometric detection with implemented wave-form at Au disposable electrode, J. Chromatogr. A, 2005, vol. 1098, p. 111.
  8. Casella, G., Gatta, M., and Desimoni, E., Determination of histamine by high-pH anion-exchange chromatography with electrochemical detection, Food Chem., 2001, vol. 73, p. 367.
  9. Lyons, T.D. and Andrews, A.C., A Spectrophotometric method for the quantitative determination of histamine, Trans. Kans. Acad. Sci., 1955, vol. 58, p. 435.
  10. Gao, F., Grant, E., and Lu, X., Determination of histamine in canned tuna by molecularly imprinted polymers-surface enhanced Raman spectroscopy, Anal. Chim. Acta, 2015, vol. 901, p. 68.
  11. Pessatti, T.L., Fontana, J.D., and Pessatti, M.L., Spectrophotometric determination of histamine in fisheries using an enzyme immunoassay method, Methods Mol. Biol., 2004, vol. 268, p. 311.
  12. Sakai, T., Ohno, N., Tanaka, M., and Okada, T., Spectrophotometric determination of histamine in mast cells, muscle and urine by solvent extraction with copper( II) and tetrabromophenolphthalein ethyl ester, Analyst, 1984, vol. 109, p. 1569.
  13. Fleischmann, M., Korinek, K., and Pletcher, D., The oxidation of organic compounds at a nickel anode in alkaline solution, J. Electroanal. Chem. Interfacial Electrochem., 1971, vol. 31, p. 39.
  14. Sarada, B.V., Rao, T.N., Tryk, D.A., and Fujishima, A., Electrochemical oxidation of histamine and serotonin at highly boron-doped diamond electrodes, Anal. Chem., 2000, vol. 72, p. 1632.
  15. Geto, A., Tessema, M., and Admassie, S., Determination of histamine in fish muscle at multi-walled carbon nanotubes coated conducting polymer modified glassy carbon electrode, Synth. Met., 2014, vol. 191, p. 135.
  16. Carrallero, V., Gonzalez-Cortes, A., Yanez-Sedeno, P., and Pingarron, J.M., Pulsed amperometric detection of histamine at glassy carbon electrodes modified with gold nanoparticles, Electroanalysis, 2004, vol. 17, p. 289.
  17. Degefu, H., Amare, M., Tessema, M., and Admassie, S., Lignin modified glassy carbon electrode for the electrochemical determination of histamine in human urine and wine samples, Electrochim. Acta, 2014, vol. 121, p. 307.
  18. Young, J.A., Jiang, X., and Kirchhoff, J.R., Amperometric detection of histamine with a pyrroloquinolinequinone modified electrode, Electroanalysis, 2013, vol. 25, p. 1589.
  19. Svarc-Gajic, J. and Stojanovic, Z., Electrocatalytic determination of histamine on a nickel-film glassy carbon electrode, Electroanalysis, 2010, vol. 22, p. 2931.
  20. Svarc-Gajic, J. and Stojanovic, Z., Determination of histamine in cheese by chronopotentiometry on a thin film mercury electrode, Food Chem., 2011, vol. 124, p. 1172.
  21. Keow, C.M., Bakar, F.A., Salleh, A.B., Heng, L.Y., Wagiran, R., and Bean, L.S., An amperometric biosensor for the rapid assessment of histamine level in tiger prawn (Penaeus monodon) spoilage, Food Chem., 2007, vol. 105, p. 1636.
  22. Niculescu, M., Frebort, I., Pec, P., Galuszka, P., Mattiasson, B., and Csoregi, E., Amine oxidase based amperometric biosensors for histamine detection, Electroanalysis, 2000, vol. 12, p. 369.
  23. Telsnig, D., Kalcher, K., Leitner, A., and Ortner, A., Design of an amperometric biosensor for the determination of biogenic amines using screen printed carbon working electrodes, Electroanalysis, 2013, vol. 25, p. 47.
  24. Alonso-Lomillo, M.A., Dominguez-Renedo, O., Matos, P., and Arcos-Martinez, M.J., Disposable biosensors for determination of biogenic amines, Anal. Chim. Acta, 2010, vol. 665, p. 26.
  25. Salimi, A., Roushani, M., Soltanian, S., and Hallaj, R., Picomolar detection of insulin at renewable nickel powder-doped carbon composite electrode, Anal. Chem., 2007, vol. 79, p. 7431.
  26. Salimi, A. and Roushani, M., Electrocatalytic oxidation of sulfur containing amino acids at renewable Nipowder doped carbon ceramic electrode: Application to amperometric detection L-cystine, L-cysteine and L-methionine, Electroanalysis, 2006, vol. 18, p. 2129.
  27. Salimi, A., Roushani, M., and Hallaj, R., Micromolar determination of sulfur oxoanions and sulfide at a renewable sol–gel carbon ceramic electrode modified with nickel powder, Electrochim. Acta, 2006, vol. 51, p. 1952.
  28. Rowsell, J.L.C. and Yaghi, O.M., Metal–organic frameworks: A new class of porous materials, Microporous Mesoporous Mater., 2004, vol. 73, p. 3.
  29. Fotouhi, L. and Naseri, M., Recent electroanalytical studies of metal-organic frameworks: A mini-review, Crit. Rev. Anal. Chem., 2016, vol. 46, p. 323.
  30. Zhou, E., Zhang, Y., Li, Y., and He, X., Cu(II)-based MOF immobilized on multiwalled carbon nanotubes: Synthesis and application for nonenzymatic detection of hydrogen peroxide with high sensitivity, Electroanalysis, 2014, vol. 26, p. 2526.
  31. Wang, Y., Ge, H., Ye, G., Chen, H., and Hu, X., Carbon functionalized metal organic framework/Nafion composites as novel electrode materials for ultrasensitive determination of dopamine, J. Mater. Chem. B, 2015, vol. 3, p. 3747.
  32. Zhang, Y., Bo, X., Luhana, C., Wang, H., Li, M., and Guo, L., Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability, Chem. Commun., 2013, vol. 49, p. 6885.
  33. Wang, X., Wang, Q., Wang, Q., Gao, F., Gao, F., Yang, Y., and Guo, H., Highly dispersible and stable copper terephthalate metal–organic framework–graphene oxide nanocomposite for an electrochemical sensing application, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 11573.
  34. Zhou, J., Li, X., Yang, L., Yan, S., Wang, M., Cheng, D., Chen, Q., Dong, Y., Liu, P., Cai, W., and Zhang, C., The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits, Anal. Chim. Acta, 2015, vol. 899, p. 57.
  35. Wang, Y., Wu, Y., Xie, J., Ge, H., and Hu, X., Multiwalled carbon nanotubes and metal–organic framework nanocomposites as novel hybrid electrode materials for the determination of nano-molar levels of lead in a lab-on-valve format, Analyst, 2013, vol. 138, p. 5113.
  36. Hadi, M. and Ehsani, A., Anodized Edge-plane pyrolytic graphite for electroanalysis of pantoprazole in tablet dosage forms and human urine samples, S. Afr. J. Chem., 2016, vol. 69, p. 79.
  37. Kang, L., Sun, S.X., Kong, L.B., Lang, J.W., and Luo, Y.C., Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors, Chin. Chem. Lett., 2014, vol. 25, p. 957.
  38. Muresan, L.M., Zeolite-modified electrodes with analytical applications, Pure Appl. Chem., 2011, vol. 83, p. 325.
  39. Bard, A.J. and Faulkner, L.R., Electrochemical Methods, New York: Wiley, 2001.
  40. Koita, D., Tzedakis, T., Kane, C., Diaw, M., Sock, O., and Lavedan, P., Study of the histamine electrochemical oxidation catalyzed by nickel sulfate, Electroanalysis, 2014, vol. 26, p. 2224.
  41. Hampson, N.A., Lee, J.B., and Macdonald, K.I., Oxidations at copper electrodes. Part 41. The oxidation of α-amino acids, J. Electroanal. Chem., 1972, vol. 34, p. 91.