Examples



mdbootstrap.com



 
Статья
2021

Electrochemical Synthesis of Porous Copper(II) Oxide Microparticles with Rectangular Hexagonal Morphology


E. O. AndriychenkoE. O. Andriychenko, V. I. ZelenovV. I. Zelenov, V. E. BovykaV. E. Bovyka, N. N. BukovN. N. Bukov
Российский журнал общей химии
https://doi.org/10.1134/S1070363221040204
Abstract / Full Text

Microparticles of CuO were obtained by thermal decomposition of copper(II) oxalate synthesized by pulse electrolysis of an oxalic acid solution with a sacrificial copper anode. Scanning electron microscopy showed that the particles are rectangular hexagon-shaped with a size of 0.2–5 µm and form complex irregular aggregates with a porous structure. The use of the water–dimethylformamide solvents with a volume ratio 1 : 1 is optimal to achieve the desired morphology of the product.

Author information
  • Kuban State University, 350040, Krasnodar, RussiaE. O. Andriychenko, V. I. Zelenov, V. E. Bovyka & N. N. Bukov
References
  1. Anu Prathap, M.U., Kaur, B., and Srivastava, R., J. Colloid Interface Sci., 2012, vol. 370, p. 144. https://doi.org/10.1016/j.jcis.2011.12.074
  2. Cheng, L., Shao, M., Chen, D., and Zhang, Y., Mater. Res. Bull., 2010, vol. 45, p. 235. https://doi.org/10.1016/j.materresbull.2009.08.001
  3. Wan, M., Jin, D., Feng, R., Si, L., Gao, M., and Yue, L., Inorg. Chem. Commun., 2011, vol. 14, p. 38. https://doi.org/10.1016/j.inoche.2010.09.025
  4. Siddiqui, H., Qureshi, M.S., and Haque, F.Z., Optik., 2016, vol. 127, p. 2740. https://doi.org/10.1016/j.ijleo.2015.11.220
  5. Ayodhya, D. and Veerabhadram, G., Chem. Data Collect., 2019, vol. 23, p. 1. https://doi.org/10.1016/j.cdc.2019.100259
  6. Feng, L., Xuan, Zh., Bai, Y., Zhao, H., Li, L., Chen, Y., Yang, X., Su, Ch., Guo, J., and Chen, X., J. Alloys Compd., 2014, vol. 600, p. 162. https://doi.org/10.1016/j.jallcom.2014.02.132
  7. Kim, K.H., Kanamaru, Y., Abe, Y., Kawamura, M., and Kiba, T., Mater. Lett., 2020, vol. 265, p. 1. https://doi.org/10.1016/j.matlet.2020.127424
  8. Rao, M.P., Ponnusamy, V.K., Wu, J.J., Asiri, A.M., and Anandan, S., J. Environ. Chem. Eng., 2018, vol. 6, p. 6059. https://doi.org/10.1016/j.jece.2018.09.041
  9. Zhang, X., Zhang, D., Ni, X., and Zheng, H., SolidState Electron., 2008, vol. 52, p. 245. https://doi.org/10.1016/j.sse.2007.08.009
  10. Shamsipur, M., Roushani, M., and Pourmortazavi, S.M., Mater. Res. Bull., 2013, vol. 48, p. 1275. https://doi.org/10.1016/j.materresbull.2012.12.032
  11. Das, S. and Srivastava, V.Ch., Mater. Lett., 2015, vol. 150, p. 130. https://doi.org/10.1016/j.matlet.2015.03.018
  12. Liu, Y., Shu, Y., Sun, B., Zeng, X., Zhu, J., Yi, J., and He, J., Ceram. Int., 2019, vol. 45, p. 19068. https://doi.org/10.1016/j.ceramint.2019.06.151
  13. Mashentseva, A.A., Kozlovskiy, A.L., and Zdorovets, M.V., Russ. J. Gen. Chem., 2019, vol. 89, no. 5, p. 988. https://doi.org/10.1134/S1070363219050189
  14. Rodríguez, A. and García-Vázquez, J.A., Coord. Chem. Rev., 2015, vol. 303, p. 42. https://doi.org/10.1016/j.ccr.2015.05.006
  15. Sargsyan, S.H., Sargsyan, T.S., Agadjanyan, I.G., Khizantsyan, K.M., Sargsyan, and A.S., Margaryan, K.S., Russ. J. Gen. Chem., 2020, vol. 90, no. 6, p. 906. https://doi.org/10.31857/S0044460X20060108
  16. Cao, Y., Wang, Y.-j., Zhou, K.-g., and Bi, Zh., Trans. Nonferrous Met. Soc. China, 2010, vol. 20, p. s216. https://doi.org/10.1016/S1003-6326(10)60042-8
  17. Zelenov, V.I., Shabanova, I.V., and Tsokur, M.N., Russ. J. Gen. Chem., 2008, vol. 78, no. 11, p. 2166. https://doi.org/10.1134/S1070363208110352
  18. GOST 10896-78. Ionites. Preparation for the test. Moscow: IPK Publishing House of Standards, 1998.
  19. RF Patent 2493161, 2013; Byull. Izobret., 2013, no. 26.