Статья
2017

Effect of the conditions of activated carbon synthesis from wood on its porous structure and the specific characteristics of double layer supercapacitors with a sulfuric acid-based electrolyte


D. E. Vervikishko D. E. Vervikishko , E. I. Shkol’nikov E. I. Shkol’nikov , I. V. Yanilkin I. V. Yanilkin , Yu. G. Chirkov Yu. G. Chirkov , V. I. Rostokin V. I. Rostokin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517050159
Abstract / Full Text

For supercapacitors with sulfuric acid electrolyte, a promising carbon material was suggested, namely, activated carbon from waste wood. It was shown how the synthesis conditions of activated carbon affect its porous structure and electrochemical characteristics of supercapacitors on its basis. The changes in the porous material under different synthesis conditions were controlled using the highly informative limited evaporation method, which allows us to obtain complete information about the porous structure of the micro- and mesopores of the material within a relatively short period of time. The negative effect of the excess volume of macropores in the electrode on the capacity and energy based on the dry mass of electrodes was shown experimentally and analyzed. The properties of the synthesized material were compared with those of other carbon materials. The best samples of the developed material possess a specific electric capacity of over 390 F/g.

Author information
  • Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia

    D. E. Vervikishko, E. I. Shkol’nikov & I. V. Yanilkin

  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia

    Yu. G. Chirkov

  • National Research Nuclear University MEPhi, Moscow, 115409, Russia

    V. I. Rostokin

References
  1. Yu, A., Chabot, V., and Zhang, J., Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications, Boca Raton: CRC Press, 2013.
  2. Volfkovich, Yu.M. and Serdyuk, T.M., Russ. J. Electrochem., 2002, vol. 38, p. 935.
  3. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors, New York: Wiley, 2015.
  4. Ariyanayagam, K.D., Advanced Electrode Materials for Electrochemical Supercapacitors, Open Access Dissertations and Theses, McMaster University, Hamilton, Ontario, 2012, p. 6722.
  5. Beguin, F. and Frackowiak, E., Supercapacitors. Materials, Systems, and Applications, Weinheim: Wiley-VCH, 2013, p. 539.
  6. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2014, vol. 50, p. 13.
  7. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2014, vol. 50, p. 208.
  8. Chirkov, Yu.G. and Rostokin, V.I., Al’tern. Energ. Ekol., 2014, no. 18, p. 111.
  9. Xu, B., Chen, Y., Wei, G., Cao, G., Zhang, H., and Yang, Y., Mater. Chem. Phys., 2010, vo. 124, p. 504.
  10. Linares-Solano, A., Lillo-Rodenas, M.A., Marko-Lozar, J.P., Kunowsky, M., and Romero-Anaya, A.J., Int. J. Energy, Environ. Econ., 2012, vol. 20, no. 4, p. 59.
  11. Lozano-Castello, D., Calo, J.M., Cazorla-Amoros, D., and Linares-Solano, A., Coal, 2007, vol. 45, p. 2529.
  12. Shkol’nikov, E.I., Elkina, I.B., and Volkov, V.V., RF Patent 2141642, 1998.
  13. Shkol’nikov, E.I. and Volkov, V.V., Dokl. Ross. Akad. Nauk, 2001, vol. 378, p. 507.
  14. Shkolnikov, E., Sidorova, E., Malakhov, A., Volkov, V., Julbe, A., and Ayral, A., Adsorption, 2011, vol. 17, p. 911.
  15. Shkolnikov, E.I., Sidorova, E.V., Shaitura, N.S., Vervikishko, D.E., and Grigorenko, A.V., Handbook of Functional Nanomaterials, vol. 2: Characterization and Reliability, Ch. 3: Enhanced Method for Study of Materials Nanoporous Structure, 2014.
  16. Vervikishko, D.E. and Shkol’nikov, E.I., Evraz. Soyuz Uchen., 2015, vol. 2, p. 154.
  17. Wheeler, A., Catalysis, New York: Reinhold, 1955, p. 118.
  18. Dollimore, D. and Heal, G.R., J. Appl. Chem., 1964, vol. 14, p. 109.
  19. Barret, E.P., Joyner, L.G., and Halenda, P.P., J. Am. Chem. Soc., 1951, vol. 73, p. 373.
  20. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, London: Academic Press, 1982.
  21. Dobele, G., Teliseva, G., Dizhbite, T., Volperts, A., Vervikishko, D., and Shkolnikov, E., Patent LV14683, Latvia, 2014.
  22. Volperts, A., Mironova-Ulmane, N., Sildos, I., Vervikishko, D., Shkolnikov, E., and Dobele, G., IOP Conf. Ser.: Mater. Sci. Eng., 2012, vol. 38, p. 012051. doi 10.1088/1757-899X/38/1/01205110.1088/1757-899X/38/ 1/012051
  23. Dobele, G., Vervikishko, D., Volperts, A., Bogdanovich, N., and Shkolnikov, E., Holzforschung, 2013, vol. 67, p. 587.
  24. Vervikishko, D.E., Yanilkin, I.V., Dobele, G.V., Vol’perts, A., Atamanyuk, I.N., Sametov, A.A., and Shkol’nikov, E.I., Teplofiz. Vys. Temp., 2015, vol. 53, p. 799.
  25. Bleda-Martinez, M.J., Macia-Agullo, J.A., Lozano-Castello, D., Morallon, E., Cazorla-Amoros, D., and Linares-Solano, A., Coal, 2005, vol. 43, p. 2677.
  26. Xu, B., Wu, F., Chen, R., Cao, G., Chen, S., Zhou, Z., and Yang, Y., Electrochem. Commun., 2008, vol. 10, p. 795.
  27. Zhang, Z., Cui, M., Lai, Y., Li, J., and Liu, Y., J. Cent. South Univ. Technol., 2009, vol. 16, p. 91.
  28. Lota, G., Centeno, T.A., and Frackowiak Stoeckli, F., Electrochim. Acta, 2008, vol. 53, p. 2210.
  29. Cuhadaroglu, D. and Uygun, O.A., Afr. J. Biotechnol., 2008, vol. 7, p. 3703.
  30. Liao, W.-C., Liao, F.-S., Tsai, C.-T., and Yang, Y.-P., China Steel Techn. Rep., 2012, no. 25, p. 36.
  31. Lozano-Castello, D., Marko-Lozar, J.P., Bleda-Martinez, M.J., Montilla, F., Morallon, E., Linares-Solano, A., and Cazorla-Amoros, D., Tanso, 2013, no. 256, p. 41.
  32. Vol’fkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., and Krestinin, A.V., Elektrokhim. Energ., 2008, vol. 8, no. 2, p. 106.
  33. Vervikishko, D.E., Korrelyatsii mezhdu nanoporistoi strukturoi uglerodnykh materialov i funktsional’nymi kharakteristikami superkondensatorov na ikh osnove (Correlations between the Nanoporous Structure of Carbon Materials and the Functional Characteristics of Supercapacitors on Their Basis), Cand. Sci. (Eng.) Dissertation, Moscow: Joint Institute for High Temperatures, 2014.