Examples



mdbootstrap.com



 
Статья
2022

On the origin of non-Markovian kinetics of light-induced magneto-structural relaxation in “breathing” crystals


V. A. MorozovV. A. Morozov
Российский химический вестник
https://doi.org/10.1007/s11172-022-3541-z
Abstract / Full Text

Traditional mean-field theory of light-induced magneto-structural relaxation in spin-crossover compounds provides a qualitatively correct explanation for the non-Markovian self-accelerating character of the experimentally observed kinetics of the process. The relaxation kinetics of “breathing” crystals is often also of non-Markovian character, being, however, self-decelerating. In this work the self-decelerating kinetics of light-induced magneto-structural relaxation is explained using a kinetic analysis of the concentration profile of photoexcited Jahn—Teller exchange clusters in “breathing” crystals of finite thickness. The results obtained are also equally applicable to the kinetics of light-induced relaxation of classical spin-crossover systems.

Author information
  • International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 3a ul. Institutskaya, 630090, Novosibirsk, RussiaV. A. Morozov
References
  1. V. I. Ovcharenko, S. V. Fokin, G. V. Romanenko, Yu. G. Shvedenkov, V. N. Ikorskii, E. V. Tretyakov, S. F. Vasilevskii, Russ. J. Struct. Chem., 2002, 43, 153; DOI: https://doi.org/10.1023/A:1016094421024.
  2. V. I. Ovcharenko, K. Yu. Maryunina, S. V. Fokin, E. V. Tretyakov, G. V. Romanenko, V. N. Ikorskii, Russ. Chem. Bull., 2004, 53, 2406; DOI: https://doi.org/10.1007/s11172-005-0136-4.
  3. V. I. Ovcharenko, E. G. Bagryanskaya, in Spin-Crossover Materials. Properties and Applications, Ed. M. A. Halcrow, Wiley, 2013, 239; DOI: https://doi.org/10.1002/9781118519301.ch9.
  4. M. V. Fedin, S. L. Veber, E. G. Bagryanskaya, V. I. Ovcharenko, Coord. Chem. Rev., 2015, 289–290, 341; DOI: https://doi.org/10.1016/j.ccr.2014.11.015.
  5. K. Yu. Maryunina, X. Zhang, S. Nishihara, K. Inoue, V. A. Morozov, G. V. Romanenko, V. I. Ovcharenko, J. Mater. Chem. C, 2015, 3, 7788; DOI: https://doi.org/10.1039/C5TC01005E.
  6. V. Ovcharenko, G. Romanenko, A. Polushkin, G. Letyagin, A. Bogomyakov, M. Fedin, K. Maryinina, S. Nishihara, K. Inoue, M. Petrova, V. Morozov, E. Zueva, Inorg. Chem., 2019, 58, 9187; DOI: https://doi.org/10.1021/acs.inorgchem.9b00815.
  7. M. V. Fedin, K. Yu. Maryunina, R. Z. Sagdeev, V. I. Ovcharenko, E. G. Bagryanskaya, Inorg. Chem., 2012, 51, 709; DOI: https://doi.org/10.1021/ic202248v.
  8. V. A. Morozov, N. N. Lukzen, V. I. Ovcharenko, Russ. Chem. Bull., 2008, 57, 863; DOI: https://doi.org/10.1007/s11172-008-0123-7.
  9. V. A. Morozov, N. N. Lukzen, V. I. Ovcharenko, Dokl. Phys. Chem., 2010, 430, 33; DOI: https://doi.org/10.1134/S0012501610020053.
  10. V. A. Morozov, Phys. Chem. Chem. Phys., 2013, 15, 9931; DOI: https://doi.org/10.1039/C3CP50689D.
  11. V. A. Morozov, N. N. Lukzen, V. I. Ovcharenko, Phys. Chem. Chem. Phys., 2010, 12, 13667; DOI: https://doi.org/10.1039/C004287K.
  12. A. Hauser, Top. Curr. Chem., 2004, 234, 155; DOI: https://doi.org/10.1007/b95416.
  13. J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, New York, 1970, 717 pp.