Examples



mdbootstrap.com



 
Статья
2021

Chemical vapor deposition of iron-containing films during the decomposition of trimethylamine borane-ferrocene (or iron pentacarbonyl) mixtures: a thermodynamic modeling


V. A. ShestakovV. A. Shestakov, M. L. KosinovaM. L. Kosinova
Российский химический вестник
https://doi.org/10.1007/s11172-021-3238-8
Abstract / Full Text

Chemical vapor deposition (CVD) of films of complex composition using trimethylamine borane- ferrocene (or iron pentacarbonyl) mixtures in the systems B-C-N-H-Fe-O and B-C-N-H-Fe at reduced pressures (0.1–10 Torr) in a wide temperature range of 300–1300 K was simulated. The corresponding CVD diagrams were calculated and the regions of formation of the phase complexes BN + Fe + C, BN + Fe2C + C, and BN + Fe2C + FeB + C were determined. Simulation of the systems C-H-Fe-Ar, C-H-Fe-Si-Ar, C-H-Fe-Si-O-Ar, and C-H-Fe-Al-O-Ar during the decomposition of ferrocene on substrates of different nature (Si, SiO2, Al2O3) was carried out. The possibility of formation of transition layers containing (i) iron silicides and silicon carbide on the Si and SiO2 substrates already at low temperatures and (ii) aluminum carbide on the Al2O3 substrate at high temperatures is demonstrated.

Author information
  • Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 prosp. Akad. Lavrent’eva, 630090, Novosibirsk, Russian FederationV. A. Shestakov & M. L. Kosinova
References
  1. B. Liang, X. Liao, Q. Zhu, Z. Yang, D. Jia, Y. Zhou, J. Am. Ceram. Soc., 2020, 103, 4189; DOI: https://doi.org/10.1111/jace.17168.
  2. G. Barroso, Q. Li, R. K. Bordia, G. Motz, J. Mater. Chem. A, 2019, 7, 1936; DOI: https://doi.org/10.1039/c8ta09054h.
  3. I. S. Merenkov, H. Katsui, M. N. Khomyakov, V. S. Sulyaeva, R. V. Pushkarev, R. Tu, T. Goto, M. L. Kosinova, J. Eur. Ceram. Soc., 2019, 39, 5123; DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.08.006.
  4. N. B. Kondrashova, A. I. Lebedev, S. N. Lysenko, V. A. Valtsifer, V. N. Strelnikov, Inorg. Mater., 2019, 55, 673; DOI: https://doi.org/10.1134/S0020168519060062.
  5. R. A. Dvorikova, M. M. Il’in, A. A. Korlyukov, M. I. Buzin, I. V. Shchetinin, Russ. Chem. Bull., 2020, 69, 1151; DOI: https://doi.org/10.1007/s11172-020-2882-8.
  6. R. A. Dvorikova, A. S. Peregudov, A. A. Korlyukov, M. I. Buzin, I. V. Nagornova, V. A. Vasnev, Russ. Chem. Bull., 2019, 68, 1435; DOI: https://doi.org/10.1007/s11172-019-2573-5.
  7. A. M. Demin, T. G. Khonina, E. V. Shadrina, E. A. Bogdanova, D. K. Kuznetsov, A. V. Mekhaev, V. Ya. Shur, V. P. Krasnov, Russ. Chem. Bull., 2019, 68, 1178; DOI: https://doi.org/10.1007/s11172-019-2536-x.
  8. R. Wei, E. Langa, C. Rincon, J. H. Arps, Surf. Coat. Technol., 2006, 201, 4453; DOI: https://doi.org/10.1016/j.surfcoat.2006.08.091.
  9. L. Chareyre, S. Cerneaux, D. Cornu, V. Rouessac, Thin Solid Films, 2013, 527, 87; DOI: https://doi.org/10.1016/j.tsf.2012.12.004.
  10. L. Qiu, Y. Du, L. Wu, S. Wang, J. Zhu, W. Cheng, Z. Tan, L. Yin, Z. Liu, A. Layyous, Surf. Coat. Technol., 2019, 378, 124956; DOI: https://doi.org/10.1016/j.surfcoat.2019.124956.
  11. R. Pushkarev, N. Fainer, V. Kirienko, A. Matsynin, V. Nadolinnyy, I. Merenkov, S. Trubina, S. Ehrenburg, K. Kvashnina, J. Mater. Chem. C., 2019, 7, 4250; DOI: https://doi.org/10.1039/c9tc00299e.
  12. Y. Feng, X. Guo, H. Gong, Y. Zhang, Y. Liu, X. Lin, J. Mao, Ceram. Inter., 2018, 44, 10420; DOI: https://doi.org/10.1016/j.ceramint.2018.03.058.
  13. C. Skjöldebrand, G. Hulsart-Billström, H. Engqvist, C. Persson, Materials, 2020, 13, 2074; DOI: https://doi.org/10.3390/ma13092074.
  14. D. Zhong, E. Sutter, J. J. Moore, G. G. W. Mustoe, E. A. Levashov, J. Disam, Thin Solid Films, 2001, 398–399, 320; DOI: https://doi.org/10.1016/S0040-6090(01)01344-X.
  15. C. Kainz, N. Schalk, M. Tkadletz, C. Mitterer, C. Czettl, Thin Solid Films, 2019, 688, 137283; DOI: https://doi.org/10.1016/j.tsf.2019.05.002.
  16. J. Houska, P. Steidl, J. Vlcek, J. Martan, Ceram. Inter., 2016, 42, 4361, DOI: https://doi.org/10.1016/j.ceramint.2015.11.115.
  17. J. Vlček, P. Steidl, J. Kohout, R. Čerstvý, P. Zeman, Š. Prokšová, V. Peřina, Surf. Coat. Technol., 2013, 215, 186; DOI: https://doi.org/10.1016/j.surfcoat.2012.08.084.
  18. Q. Ma, F. Zhou, Q. Wang, Z. Wu, K. Chen, Z. Zhou, L. Kwok-Yan Li., RSC Adv., 2016, 6, 47698; DOI: https://doi.org/10.1039/c6ra09264k.
  19. X. Meng, T. Zhang, J. Zhang, G. Qu, L. Wu, H. Liu, H. Zhao, B. Zhong, L. Xia, X. Huang, G. Wen, Nanotechnology, 2020, 31, 255710; DOI: https://doi.org/10.1088/1361-6528/ab758c.
  20. R. Nandan, K. K. Nanda, J. Mater. Chem. A, 2017, 5, 16843; DOI: https://doi.org/10.1039/c7ta04597b.
  21. S. D. Nehate, A. K. Saikumar, A. Prakash, K. B. Sundaram, Mater. Today Adv., 2020, 8, 100106; DOI: https://doi.org/10.1016/j.mtadv.2020.100106.
  22. L. Souqui, J. Palisaitis, H. Hogberg, H. Pedersen, J. Mater. Chem. C, 2020, 8, 4112; DOI: https://doi.org/10.1039/d0tc00616e.
  23. V. S. Sulyaeva, Yu. M. Rumyantsev, M. L. Kosinova, A. N. Golubenko, N. I. Fainer, F. A. Kuznetsov, Surf. Coat. Technol., 2007, 201, 9009; DOI: https://doi.org/10.1016/j.surfcoat.2007.04.016.
  24. M. L. Kosinova, E. A. Maximovskii, Yu. M. Rumyantsev, N. I. Fainer, F. A. Kuznetsov, Nucl. Inst. Methods Phys. Res., A, 2001, 470, 253; DOI: https://doi.org/10.1016/S0168-9002(01)01070-1.
  25. V. S. Sulyaeva, M. L. Kosinova, Yu. M. Rumyantsev, V. G. Kesler, F. A. Kuznetsov, Surf. Coat. Technol., 2013, 230, 145; DOI: https://doi.org/10.1016/j.surfcoat.2013.06.018.
  26. O. Baake, P. S. Hoffmann, M. L. Kosinova, A. Klein, B. Pollakowski, B. Beckhoff, N. I. Fainer, V. A. Trunova, W. Ensinger, Anal. Bioanal. Chem., 2010, 398, 1077; DOI: https://doi.org/10.1007/s00216010-3965-4.
  27. J. Zhang, W. Xie, X. Xu, S. Zhang, J. Zhao, Chem. Mater., 2016, 28(14), 5022; DOI: https://doi.org/10.1021/acs.chemmater.6b01764.
  28. Y. Fang, I. S. Merenkov, X. Li, J. Xu, S. Lin, M. L. Kosinova, X. Wang, J. Mater. Chem. A, 2020, 8(26), 13059; DOI: https://doi.org/10.1039/d0ta04593d.
  29. M. Zhang, M. Zhou, Z. Luo, J. Zhang, S. Wang, X. Wang, Chem. Commun., 2020, 56, 2558; DOI: https://doi.org/10.1039/c9cc09524a.
  30. P. Chithaiah, K. Pramoda, G. U. Kulkarni, C. N. R. Rao, Eur. J. Inorg. Chem, 2020, 2020(13), 1230; DOI: https://doi.org/10.1002/ejic.201901362.
  31. S. Zeng, W. Feng, H. Luo, Y. Tan, Y. Wang, H. Zhang, T. Zhang, S. Peng, Chem. Phys. Lett., 2017, 674, 164; DOI: https://doi.org/10.1016/j.cplett.2017.02.075.
  32. J. Lü, H. Li, P. Zhu, X. Lü, Y. Li, Appl. Surf. Sci., 2011, 257, 4963; DOI: https://doi.org/10.1016/j.apsusc.2011.01.004.
  33. Silicon Carbide - Materials, Processing and Applications in Electronic Devices, Ed. M. Mukherjee, InTech, Rijeka, Croatia, 2011, 546 p.
  34. P. S. Hoffmann, O. Baake, M. L. Kosinova, B. Beckhoff, A. Klein, B. Pollakowski, V. A. Trunova, V. S. Sulyaeva, F. A. Kuznetsov, W. Ensinger, X-Ray Spectrometry, 2012, 41, 240; DOI: https://doi.org/10.1002/xrs.2387.
  35. P. A. Dowben, O. Kizilkaya, J. Liu, B. Montag, K. Nelson, I. Sabirianov, J. I. Brand, Mater. Lett., 2009, 63, 72; DOI: https://doi.org/10.1016/j.matlet.2008.09.004.
  36. V. A. Shestakov, V. I. Kosyakov, M. L. Kosinova, Russ. Chem. Bull., 2019, 68, 1983; DOI: 1066-5285/19/6811-1983.
  37. V. I. Kosyakov, V. A. Shestakov, M. L. Kosinova, Russ. J. Inorg. Chem., 2018, 63, 822; DOI: https://doi.org/10.1134/S0036023618060153.
  38. A. A. Titov, A. N. Golubenko, M. L. Kosinova, F. A. Kuznetsov, Russ. J. Phys. Chem., 2010, 84, 1891; DOI: https://doi.org/10.1134/S0036024410110129.
  39. F. A. Kuznetsov, A. N. Golubenko, M. L. Kosinova, Appl. Surf. Sci., 1997, 113, 638; DOI: https://doi.org/10.1016/S0169-4332(96)00816-1.
  40. N. I. Fainer, R. V. Pushkarev, S. B. Ehrenburg, S. V. Trubina, V. A. Shestakov, I. S. Merenkov, M. Terauchi, J. Struct. Chem., 2018, 59, 1588; DOI: https://doi.org/10.1134/S0022476618070107.
  41. F. A. Kuznetsov, V. A. Titov, S. V. Borisov, V. N. Vertoprakhov, Data Bases of Properties of Electronic Materials/CODATA Bulletin: Abstracts, 11th Int. CODATA Conference, Karlsruhe, Germany, No. 68, 1988, p. 9.
  42. V. P. Glushko, L. V. Gurvich, I. V. Veyts, V. A. Medvedev, G. A. Khachkuruzov, V. S. Yungman, G. A. Bergman, V. F. Baybuz, V. S. Iorish, N. M. Aristova, V. N. Vdovin, S. I. Gorbov, L. N. Gorokhov, A. V. Gusarov, M. S. Demidova, O. V. Dorofeeva, Yu. S. Ezhov, M. E. Efimov, A. G. Efimova, Yu. M. Efremov, V. Yu. Zitserman, V. A. Kulemza, L. F. Kuratova, V. Ya. Leonidov, M. F. Moskovskaya, I. I. Nazarenko, E. L. Osina, I. N. Przhevalskiy, A. L. Rogatskiy, N. P. Rtishcheva, V. G. Ryabova, I. V. Sidorova, P. I. Tolmach, S. E. Tomberg, L. R. Fokin, Yu. G. Khait, N. E. Khandamirova, Yu. S. Khodeev, E. A. Shenyavskaya, G. N. Yurkov, A. Ya. Yakobson, Termodinamicheskie svoystva individual’nykh veshchestv [Thermodynamic Properties of Individual Substances], Nauka, Moscow, 1979, Vol. 2, Part 2, 395 pp. (in Russian).
  43. S. Cui, I.-H. Jun, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 56, 108; DOI: https://doi.org/10.1016/j.calphad.2016.11.003.