Статья
2018
Abstract / Full Text

The corrosion current density of Ni–Re alloy (15.8 wt % Re) was estimated using recently developed method of compensating additives. The alloy was fabricated by the electrodeposition in the form of bulk specimen and the powder prepared of this specimen. The electrodeposition was performed in stirred 5 × 10–3 M HCl solution. The method enabled us to determine the corrosion rate with no external polarization of studied specimens and at virtually constant pH value. A specific electrochemical activity of powder surface was estimated by comparing the corrosion currents of bulk and powder specimens. The powder was intended for testing its catalytic activity in several electrochemical reactions.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119071, Russia

    K. V. Rybalka, L. A. Beketaeva & A. D. Davydov

  • Institute of Metallurgy and Ore Benefication, ul. Shevchenko 29/133, Almaty, Republic of Kazakhstan, 050010, Russia

    Z. S. Abisheva, L. Ya. Agapova & S. K. Kilibaeva

References
  1. Savitsky, E.M., Tylkina, M.A., and Levin, A.M., Splavy reniya v elektronike (Rhenium Alloys in Electronics), Moscow: Energiya, 1980.
  2. Kablov, E.N., Toloraiya, V.N., and Orekhov, N.G., Monocrystalline nickel—rhenium alloys for turbine blades of gas-turbine engines, Metallovedenie i termicheskaya obrabotka metallov, 2002, no. 7, p.11.
  3. Zhulikov, V.V. and Gamburg, Yu.D., Electrodiposition of rhenium and its alloys, Russ. J. Electrochem., 2016, vol. 52, p.847.
  4. Naor, A., Eliaz, N., and Gileadi, E., Electrodeposition of alloys of rhenium with iron-group metals from aqueous solutions, J. Electrochem. Soc., 2010, vol. 157, p.422.
  5. Nezerton, L.E. and Holt, M.L., Electrodeposition of rhenium—cobalt and rhenium—iron alloys, J. Electrochem. Soc., 1952, vol. 99, p.44.
  6. Korovin, N.V. and Ronzhin, N.M., Cathodic deposition of rhenium–nickel alloy from ammonium perrhenate electrolyte, Zh. Prikl. Khim., 1963, vol. 33, p. 2734.
  7. Berezina, S.I., Keshner, T.D., Khodyrev, Yu.P., and Veselkov, V.P., Peculiarities of electrodeposition of nickel–rhenium alloys from acetate electrolytes, Zashch. Met., 1993, vol. 29, p.106.
  8. Berkh, O., Eliaz, N., and Gileadi, E., The initial stages of electrodeposition of Re–Ni alloys, J. Electrochem. Soc., 2014, vol. 161, p.219.
  9. Vajo, J.J., Aikens, D.A., Ashley, L., Poeltl, D.E., Railey, R.A., Clark, H.M., and Bunce, S.C., Facile electrodeposition of perrhenate in weakly acidic citrate and oxalate media, J. Inorg. Chem., 1981, vol. 20, p. 3328.
  10. Contu, F. and Taylor, S.R., Further insight into the mechanism of Re–Ni electrodepositing from concentrated aqueous citrate baths, Electrochim. Acta, 2012, vol. 70, p.34.
  11. Netherton, L.E. and Holt, M.L., Electrodeposition of rhenium–nickel alloys, J. Electrochem. Soc., 1951, vol. 98, p.106.
  12. Naor, A., Eliaz, N., and Gileadi, E., Electrodeposition of rhenium–nickel alloys from aqueous solutions, Electrochim. Acta, 2009, vol. 54, p. 6028.
  13. Pishikin, A.M. and Popereka, M.Ya., Peculiarities of cathodic process in the electrodeposition of nickel–rhenium alloys, Zh. Prikl. Khim., 1974, vol. 44, p. 1015.
  14. Byalobzheskii, A.V. and Vladimirov, V.B., Regularities of corrosion of molybdenum and tungsten alloys with rhenium in sodium chloride solution, Renii v novoi tekhnike, Tr. III Vses. Soveshchaniya po probleme reniya (Renium in New Technology, Proc. III All-Union Conf. on Rhenium), Moscow: Nauka, 1970, part 2, p.147.
  15. Tomashov, N.D. and Matveeva, T.V., Corrosion and electrochemical properties of rhenium, Renii v novoi tekhnike, Tr. III Vses. Soveshchaniya po probleme reniya (Renium in New Technology, Proc. III All-Union Conf. on Rhenium), Moscow: Nauka, 1970, part 2, p.150.
  16. Davydov, A.D., Shaldaev, V.S., Malofeeva, A.N., Chernyshova, O.V., and Volgin, V.M., Determination of corrosion rate of rhenium and its alloys, Chem. Eng. Trans., 2014, vol. 41, p.289.
  17. Shaldaev, V.S., Malofeeva, A.N., and Davydov, A.D., Determination of corrosion rate of molybdenum, rhe-nium and their alloys in sodium chloride solutions by the method of Tafel extrapolation, Russ. J. Electrochem., 2014, vol. 50, no. 10, p.994.
  18. Korovin, Yu.M. and Ulanovskii, I.B., Some corrosion characteristics of rhenium, molybdenum, tungsten, niobium and there alloys in sea water, Zashch. Met., 1974, vol. 10, p.167.
  19. Petrov, Yu.N., Parshutin, V.V., Andreeva, L.N., Tylkina, M.A., and Zhdanova, L.L., Corrosion resistance of W–Re and Mo–Re alloys, in Issledovanie i primenenie splavov tugoplavkikh metallov (Study and Application of Refractory Metal Alloys), Moscow: Nauka, 1983, pp. 89–94.
  20. Rybalka, K.V., Beketaeva, L.A., and Davydov, A. D., Determination of corrosion current density by the rate of cathodic depolarizer consumption, Russ. J. Electrochem., 2016, vol. 52, no. 3, p.268.
  21. Rybalka, K.V., Determination of metal corrosion rate using the pH-metry by the method of compensating additives, Russ. J. Electrochem., 2014, vol. 50, no. 5, p.500.
  22. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Determination of corrosion current density on bulk nickel and nickel powder by the rate of cathodic depolarizer consumption, Russ. J. Electrochem., 2016, vol. 52, no. 10, p.921.
  23. Agapova, L.Ya., Kilibayeva, S.K., Abisheva, Z.S., and Yakhiyayeva, Zh.E., Obtaining of powders of electrolytic nickel-and rhenium-containing alloys, Complex Use of Mineral Resources, 2016, no. 4, p. 83.