Examples



mdbootstrap.com



 
Статья
2016

Stochastic description of electrochemical discharge using formalism of Kramers–Moyal expansion


B. M. Grafov B. M. Grafov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516120053
Abstract / Full Text

The formalism of Kramers–Moyal expansion is used for a stochastic description of one-stage electrochemical discharge occurring via a single route. In the stochastic model under consideration, an electrochemical reaction is represented as two independent random series of anodic and cathodic elementary acts of charge transfer. Each of two random series obeys its generalized Poisson’s distribution. Three Kramers–Moyal expansions are determined. The first Kramers–Moyal expansion works near the equilibrium potential. It takes into consideration both (anodic and cathodic) series of elementary acts. The second expansion determines the stochastic behavior of electrochemical reaction at high anodic potentials. The third expansion controls the stochastic behavior of electrochemical reaction in the range of high cathodic overpotentials. The dependence of coefficients of the Kramers–Moyal expansion on the macroscopic parameters of electrochemical discharge is determined. In view of interdisciplinary character of the theory of noise and fluctuations, a stochastic description of electrochemical discharge within the framework of Kramers–Moyal expansion is of interest also for the general theory of stochastic processes.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119071, Russia

    B. M. Grafov

References
  1. Frumkin, A.N., Izbrannye trudy. Elektrodnye protsessy (Selected Works. Electrode Processes), Moscow: Nauka, 1987, p. 27.
  2. Tyagai, V.A., Elektrokhimiya, 1965, no. 1, p. 685.
  3. Grafov, B.M., Elektrokhimiya, 1966, no. 2, p. 1249.
  4. Iverson, W.P., J. Electrochem. Soc., 1968, no. 115, p. 617.
  5. Barker, G.C., J. Electroanal. Chem., 1969, no. 21, p. 127.
  6. Tyagai, V.A., Electrochim. Acta, 1971, no. 16, p. 1647.
  7. Gillespie, D.T., Hellander, A., and Petzold, L.R., J. Chem. Phys., 2013, no. 138, p. 170901.
  8. Kramers, H.A., Physica A, 1940, no. 7, p. 284.
  9. Moyal, J.E., J. Roy. Statist. Soc., 1949, no. 11, p. 150.
  10. Risken, H., Fokker-Planck Equation, Berlin: Springer, 1984, ch.4.
  11. W. Feller. An Introduction to Probability Theory and Its Application., New York: Wiley, 1967, vol. 2, ch. 6, ch.17.
  12. Levich, V.G. and Dogonadze, R.R., Collect. Czech. Chem. Commun., 1961, no. 26, p. 193.
  13. Marcus, R.A., Annu. Rev. Phys. Chem., 1964, no. 15, p. 155.
  14. Dogonadze, R.R. and Kuznetsov, A.M., Prog. Surf. Sci., 1975, no. 6, p. 1.
  15. Kuznetsov, A.M. and Ulstrup, J., Electron Transfer in Chemistry and Biology: Introduction to the Theory, Chichester: Wiley, 1999, ch.11.
  16. Kuznetsov, A.M., Charge Transfer in Chemical Reaction Kinetics. Lausanne: Polytechniques et Universitaires Romandes, 1999, ch.4.
  17. Malakhov, A.N., Kumulyantnyi analiz sluchainykh negaussovskikh protsessov i ikh preobrazovanii (Cumulant Analysis of Random Non-Gaussian Processes and Their Transforms), Moscow: Sovetskoe Radio, 1978.
  18. Grafov, B.M., Russ. J. Electrochem., 2014, no. 50, p. 92.
  19. Grafov, B.M., Russ. J. Electrochem., 2006, no. 42, p. 1026.
  20. Kolmogorov, A.N., Atti. Accad. Naz. Lincei, 1931, no. 15, p. 805.
  21. Bartlett, M.S., An Introduction to Stochastic Processes with Special Reference to Methods and Applications, Cambridge: Cambridge Univ. Press, 1955, ch.5.
  22. Bochkov, G.N. and Kuzovle., Yu.E., Sov. Phys.-JETP, 1977, no. 45, p. 125.
  23. Jarzynski, C., Phys. Rev. Lett., 1999, no. 78, p. 2690.
  24. Crooks, G.E., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 2000, no. 61, p. 2361.
  25. Pitaevskii, L.P., Phys.-Usp., 2011, no. 54, p. 625.