Examples



mdbootstrap.com



 
Статья
2020

Reaction of Phosphorus Trihalides with Methyl Triflate. Molecular and Supramolecular Structure of Methyltrichloro- and Methyltribromophosphonium Triflates


A. T. GubaidullinA. T. Gubaidullin, V. F. MironovV. F. Mironov, I. A. LitvinovI. A. Litvinov
Российский журнал общей химии
https://doi.org/10.1134/S1070363220090078
Abstract / Full Text

Prolonged (~4 years) keeping of mixtures of phosphorus trichloride or tribromide with methyl triflate in dark at 20–25°C has led to the formation of crystalline methyltrichloro- and methyltribromophosphonium triflates with a content of 10–11% in the reaction mixture and yield of 5–6%. Structure of the triflates has been elucidated by means of X-ray diffraction analysis.

Author information
  • A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420088, Kazan, RussiaA. T. Gubaidullin, V. F. Mironov & I. A. Litvinov
References
  1. Clay, J.P., J. Org. Chem., 1951, vol. 16, no. 6, p. 892. https://doi.org/10.1021/jo01146a010
  2. Kinner, A.M. and Perren, E.A., J. Chem. Soc., 1952, p. 3437. https://doi.org/10.1039/JR9520003437
  3. Freedman, L.D. and Doak, G.O., Chem. Rev., 1957, vol. 57, no. 3, p. 479. https://doi.org/10.1021/cr50015a003
  4. Engel, R., Chem. Rev., 1977, vol. 77, no. 3, p. 349. https://doi.org/10.1021/cr60307a003
  5. Drug Discovery, El-Shemy, H.A., Ed., London: InTech, 2013, ch. 12, p. 325. https://doi.org/10.5772/52504
  6. Fields, S.C., Tetrahedron, 1999, vol. 55, no. 42, p. 12237. https://doi.org/10.1016/S0040-4020(99)00701-2
  7. Demmer, C.S., Krogsgaard-Larsen, N., and Bunch, L., Chem. Rev., 2011, vol. 111, no. 12, p. 7981. https://doi.org/10.1021/cr2002646
  8. Zinov’ev, Yu.M. and Soborovskii, L.Z., Reaktsii i metody issledovaniya organicheskikh soedinenii (Reactions and Research Methods for Organic Compounds), Moscow: Khimiya, 1970, vol. 21, p. 6.
  9. du Mont, W.-W., Stenzel, V., Jeske, J., Jones, P.G., Sebald, A., Pohl, S., Saak, W., and Batcher, M., Inorg. Chem., 1994, vol. 33, no. 7, p. 1502. https://doi.org/10.1021/ic00085a047
  10. Politzer, P. and Murray, J.S., ChemPhysChem., 2013, vol. 14, no. 2, p. 278. https://doi.org/10.1002/cphc.201200799
  11. Politzer, P., Murray, J.S., and Clark, T., PhysChemChemPhys., 2013, vol. 14, no. 27, p. 11178. https://doi.org/10.1039/C3CP00054K
  12. Lommerse, J.P.M., Stone, A.J., Taylor, R., and Allen, F.H., J. Am. Chem. Soc., 1996, vol. 118, no. 13, p. 3108. https://doi.org/10.1021/ja953281x
  13. Grabowski, S.J., Theor. Chem. Acc., 2013, vol. 132, no. 4, article no. 1347. https://doi.org/10.1007/s00214-013-1347-7
  14. Navon, O., Bernstein, J., and Khodorkovsky, V., Angew. Chem. Int. Ed., 1997, vol. 36, no. 6, p. 601. https://doi.org/10.1002/anie.199706011
  15. Straver, L.H. and Schierbeek, A.J., MOLEN. Structure Determination System. Program Description, Nonius B.V., 1994, vol. 1.
  16. Sheldrick, G.M., SHELX-97, Programs for Crystal Structure Analysis (Release 97-2). University of Gottingen, Germany, 1997.
  17. Farrugia, L.J., J. Appl. Cryst., 1999, vol. 32, no. 4, p. 837. https://doi.org/10.1107/S0021889899006020
  18. Spek, A.L., J. Appl. Cryst., 2003, vol. 36, no. 1, p. 7. https://doi.org/10.1107/S0021889802022112
  19. Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., and van de Streek, J., J. Appl. Crystallogr., 2006. 39, no. 3, p. 453. https://doi.org/10.1107/S002188980600731X