Examples



mdbootstrap.com



 
Статья
2020

Quantum Chemical Modeling of the Adsorption of Crown Ethers of Different Structures on Surfaces of Lithium and Carbon


G. Z. TulibaevaG. Z. Tulibaeva, O. V. YarmolenkoO. V. Yarmolenko, A. F. ShestakovA. F. Shestakov
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420050234
Abstract / Full Text

Theoretical studies are performed of the adsorption of crown ethers of different structures (15‑crown-5, dibenzo-18-crown-6 and 3-pentadecyl-2,4-dioxo-16-crown-5) on surfaces of lithium and carbon, the main anode materials in secondary lithium power sources. The energies of adsorption of these crown ethers and the bonding energies of lithium ions with crown ether in the free and adsorbed states are calculated using the PBE density functional. It is shown that the molecules of 15-crown-5 and 3-pentadecyl-2,4-dioxo-16-crown-5 form flat structures, contributing to the stack folding of subsequent crown ether molecules. There are steric hindrances for dibenzo-18-crown-6, since one of the benzene rings is oriented perpendicularly. It is found that 3-pentadecyl-2,4-dioxo-16-crown-5 promotes the transfer of lithium ion from the electrolyte volume to the surface of both lithium and carbon better than the other two crown ethers.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, RussiaG. Z. Tulibaeva, O. V. Yarmolenko & A. F. Shestakov
  • Faculty of Fundamental Physicochemical Engineering, Moscow State University, 119991, Moscow, RussiaA. F. Shestakov
References
  1. V. P. Solov’ev and A. Yu. Tsivadze, Prot. Met. Phys. Chem. Surf. 51, 1 (2015).
  2. M. Dranka, G. Z. Zukowska, P. Jankowski, et al., J. Phys. Chem. C 121, 26713 (2017).
  3. R. Biswas, P. Ghosh, T. Banerjee, et al., ACS Omega 3, 663(2018).
  4. K. Ichihashi, D. Konno, and T. Date, Chem. Mater. 30, 7130 (2018).
  5. G. Sun, X.-X. Duan, X.-S. Liu, et al., Struct. Chem. 28, 749 (2017).
  6. R. S. Khoshnood, M. Teymoori, E. Hatami, and A. Z. Balanezhad, Russ. J. Phys. Chem. A 89, 1560 (2015).
  7. M. Jozwiak, L. Madej-Kielbik, M. Wasiak, and A. Jozwiak, J. Chem. Thermodyn. 113, 321 (2017).
  8. G. Z. Tulibaeva, O. V. Yarmolenko, and A. F. Shestakov, Russ. Chem. Bull. 58, 1589 (2009).
  9. S. Luski, D. Aurbach, B. R. Powell, et al., DE Patent No. 102017113282 A1 (2017).
  10. J. Y. Hwang and H. Y. Ha, RF Patent No. 2018001967 A (2018).
  11. K. Omichi, C. Brooks, and R. McKenney, EP Patent No. 3336952 A1 (2018).
  12. J. H. Chae, J. S. Kim, D. I. Park, et al., RU Patent No. 2564258 (2015).
  13. K. Omichi, C. Brooks, and R. McKenney, EP Patent No. 3336953 A1 (2018).
  14. A.-C. Gentschev, H. Hain, S. Scharner, and B. Stiaszny, WO Patent No. 2017216149 A1 (2017).
  15. Y.-B. Yang, Y.-X. Liu, Z. Song, et al., ACS Appl. Mater. Interfaces 9, 38950 (2017).
  16. S. Scharner, B. Stiaszny, A.-C. Gentschev, and H. Hain, DE Patent No. 102016210562 A1 (2017).
  17. S. Hahn, M. Widmaier, E. Buehler, and T. Eckl, DE Patent No. 102016217709 A1 (2018)
  18. J. Wang, X. Zheng, Z. Fan, et al., CN Patent No. 108598531 A (2018).
  19. M. Biswal, X. Zhang, D. Schilter, et al., J. Am. Chem. Soc. 139, 4202 (2017).
  20. H. Zhang and M. M. Lerner, Inorg. Chem. 55, 8281 (2016).
  21. Y. Domi, T. Doi, M. Ochida, et al., J. Electrochem. Soc. 163, A2849 (2016).
  22. D. Ruiz, A. Alegria, and F. Barroso-Bujans, Sep. Purif. Technol. 213, 142 (2019).
  23. S. H. Jamali, M. Ramdin, T. M. Becker, et al., J. Phys. Chem. B 21, 8367 (2017).
  24. W.-H. Wang, C. Gong, W. Wang, et al., Solid State Ionics 301, 176 (2017).
  25. K. Gotoh, S. Kunimitsu, H. Zhang, et al., J. Phys. Chem. C 122, 10963 (2018).
  26. O. V. Yarmolenko and O. N. Efimov, Russ. J. Electrochem. 41, 568 (2005).
  27. A. A. Ignatova, O. V. Yarmolenko, G. Z. Tulibaeva, et al., J. Power Sources 309, 116 (2016).
  28. O. V. Yarmolenko, G. Z. Tulibaeva, K. G. Khatmullina, et al., Mendeleev Commun. 26, 407 (2016).
  29. A. A. Ignatova, G. Z. Tulibaeva, O. V. Yarmolenko, and S. A. Fateev, Russ. J. Electrochem. 53, 292 (2017).
  30. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  31. D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997).