Electrochemical Synthesis of Multilayer Graphene Oxide by Anodic Oxidation of Disperse Graphite

A. V. Yakovlev A. V. Yakovlev , E. V. Yakovleva E. V. Yakovleva , V. N. Tseluikin V. N. Tseluikin , V. V. Krasnov V. V. Krasnov , A. S. Mostovoy A. S. Mostovoy , L. A. Rakhmetulina L. A. Rakhmetulina , I. N. Frolov I. N. Frolov
Российский электрохимический журнал
Abstract / Full Text

The electrochemical method for synthesizing multilayer graphene oxide by the anodic oxidation of disperse graphite in sulfuric acid is proposed. The possibility of sequential dispersion of graphite in the course of its electrochemical oxidation, hydrolysis, and thermolysis is demonstrated. It is shown that the resulting nanostructured materials tend to form agglomerates in aqueous dispersions. When treated with supersonic, the size of oxidized graphite particles decreases noticeably and they form multilayer graphene oxide. Thermolysis (250°С) leads to a considerable expansion of oxidized graphite particles (the inflation coefficient 1490 cm3 g–1) and reduction of oxygen-containing functional groups. The structure of thus obtained material includes polygraphene sheets with the thickness of 0.01–0.1 µm and contains pores of 1–10 µm.

Author information
  • Yuri Gagarin State Technical University of Saratov, 410054, Saratov, Russia

    A. V. Yakovlev, E. V. Yakovleva, V. N. Tseluikin, V. V. Krasnov, A. S. Mostovoy, L. A. Rakhmetulina & I. N. Frolov

  1. Gubin S.P. and Tkachev S.V., Grafen i rodstvennye nanoformy ugleroda [Graphene and Related Carbon Nanoforms], Moscow: Knizhnyi dom “LIBROKOM,” 2012.
  2. Graphene—Synthesis, Characterization, Properties and Applications, Gong, J.R. (Ed.), Rijeeka (Croatia): InTech., 2011, p. 184.
  3. Tkachev, S.V., Buslaeva, E.Yu., and Gubin, S.P., Graphene: A novel carbon nanomaterial, Inorg. Mater., 2011, vol. 47 (1), p. 1.
  4. Tian, L., Wang, X., Cao, L., Meziani, M.J., Kong, C.Y., Lu, F., and Sun, Y.-P., Preparation of bulk 13C-enriched graphene materials, J. Nanomater., 2010, Special Issue on Graphene, Art. ID 742167, p. 5.
  5. Edwards, R.S. and Coleman, K.S., Graphene synthesis: relationship to applications, Nanoscale, 2013, vol. 5, p. 38.
  6. Revo, S.L., Budzulyak, I.M., Rachiy, B.I., and Kuzi-shin, M.M., Electrode material for supercapacitors based on nanostructured carbon, Surf. Eng. Appl. Electrochem., 2013, vol. 49, p. 68.
  7. Kulkarni, G.S., Reddy, K., Zhong, Z., and Fan, X., Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection, Nat. Commun., 2014, no. 5, p. 1.
  8. Avouris, P. and Dimitrakopoulos, C., Graphene: synthesis and applications, Mater. Today, 2012, vol. 15, p. 86.
  9. Li, F., Jiang, X., Zhao, J., and Zhang, S., Graphene oxide: A promising nanomaterial for energy and environmental applications, Nano Energy, 2015, no. 16, p. 488.
  10. Yang, S., Lohe, M.R., Müllen, K., and Feng, X., New-generation graphene from electrochemical approaches: Production and applications, Adv. Mater., 2016, vol. 28, p. 6213.
  11. Novoselov, K.S. Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Electric field effect in atomically thin carbon films, Science, 2004, vol. 306, no. 5696, p. 666.
  12. Yang, W., Chen, G., Shi, Z., Liu, C.-C., Zhang, L., Xie, G., Cheng, M., Wang, D., Yang, R., Shi, D., Watanabe, K., Taniguchi, T., Yao, Y., Zhang, Y., and Zhang, G., Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater., 2013, vol. 12, p. 792.
  13. Zhang, X., L. Wang, J. Xin, B. I. Yakobson, F., and Ding, J., Role of hydrogen in graphene chemical vapor deposition growth on a copper surface, J. Am. Chem. Soc., 2014, vol. 136, p. 3040.
  14. Yan, Z., Peng, Z., and Tour, J.M., Chemical vapor deposition of graphene single crystals, Acc. Chem. Res., 2014, vol. 47 (4), p. 1327.
  15. Ioni, Y.V., Tkachev, S.V., Bulychev, N.A., and Gubin, S.P., Preparation of finely dispersed nanographite, Inorg. Mater., 2011, vol. 47 (6), p. 597.
  16. Hammers, W.S. and Offman, R.E. Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80 (6), p. 1339.
  17. Dreyer, D.R., Jia, H.P., and Bielawski, C.W., Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions, Angew. Chem., Int. Ed., 2010, vol. 49 (38), p. 6813.
  18. Li, Q., Guo, X., Zhang, Y., Zhang, W., Ge, C., Zhao, L., Wang, X., Zhang, H., Chen, J., Wang, Z., and Sun, L., Porous graphene paper for supercapacitor applications, J. Mater. Sci. Technol., 2017, vol. 33, p. 793.
  19. Zaaba, N.I., Foo, K.L., Hashima, U., Tanb, S.J., Liu, W.-W., and Voon, C.H., Synthesis of graphene oxide using modified Hummers method: Solvent influence, Procedia Eng., 2017, vol. 184, p. 469.
  20. Aleksenskii, A.E., Brunkov, P.N., Dideikin, A.T., Kirilenko, D.A., Kudashova, Y.V., Sakseev, D.A., Sevryuk, V.A., and Shestakov, M.S., Single-layer graphene oxide films on a silicon surface, Technical Physics, Russ.J. Appl. Phys., 2013, vol. 58 (11), p. 1614.
  21. Babaev, A.A., Zobov, M.E., Kornilov, D.Y., Tkachev, S.V., Terukov, E.I., and Levitskii, V.S., Optical and electrical properties of graphene oxide, Opt. Spektrosk., 2018, vol. 125 (6), p. 820.
  22. Tkachev, S.V., Buslaev, E.Y., Laure, I.V., Gubin, S.P., Naumkin, A.V., and Kotova, S.L., Reduced graphene oxide, Inorg. Mater., 2012, vol. 48 (8), p. 796.
  23. Hou, D., Liu, Q., Wang, X., Quan, Y., Qiao, Z., Yu, L., and Ding, S., Facile synthesis of graphene via reduction of graphene oxide by artemisinin in ethanol, J. Mater., 2018, vol. 4, p. 256.
  24. Wang, J., Salihi, E.C., and Šiller, L., Green reduction of graphene oxide using alanine, Mater. Sci. Eng., 2017, vol. 72, p. 721.
  25. Ghorbani, M., Abdizadeh, H., and Golobostanfard, M.R., Reduction of graphene oxide via modified hydrothermal method, Procedia Mater. Sci., 2015, vol. 11, p. 326.
  26. Johnson, D.W., Dobson, B.P., and Coleman, K.S., A manufacturing perspective on graphene dispersions, Curr. Opin. Colloid Interface Sci., 2015, vol. 20, p. 367.
  27. Yakovlev, A.V., Finaenov, A.I., Zabud’kov, S.L., and Yakovleva, E.V., Thermally expanded graphite: Synthesis, properties, and prospects for use, Russ. J. Appl. Chem., 2006, vol. 79 (11), p. 1741.
  28. Yakovlev, A.V., Yakovleva, E.V., Zabud’kov S.L., and Finaenov, A.I., Electrochemical processes on graphite powder electrodes in HNO3 solutions, Russ. J. Appl. Chem., 2010, vol. 83 (5), p. 820.]
  29. Wang, P., Yao, T., Sun, B., Fan, X., Dong, S., Bai, Y., and Shi, Y., A cost-effective method for preparing mechanically stable anti-corrosive superhydrophobic coating based on electrochemically exfoliated grapheme, Colloids Surf. A, 2017, vol. 513, p. 396.
  30. Chen, K. and Xue, D., Preparation of colloidal graphene in quantity by electrochemical exfoliation, J. Colloid Interface Sci., 2014, vol. 436 (15), p. 41.
  31. Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., and Müllen, K., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts, J. Am. Chem. Soc., 2014, vol. 136 (16), p. 6083.
  32. Singh, R. and Tripathi, C.C., Synthesis of colloidal graphene by electrochemical exfoliation of graphite in lithium sulphate, Mater. Today: Proc., 2018, vol. 5 (1), p. 973.
  33. Wang, H., Wei, C., Zhu, K., Zhang, Y., Gong, C., Guo, J., Zhang, J., Yu, L., and Zhang, J., Preparation of graphene sheets by electrochemical exfoliation of graphite in confined space and their application in transparent conductive films, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 34456.
  34. Krivenko, A.G., Manzhos, R.A., and Kotkin, A.S., Plasma-assisted electrochemical exfoliation of graphite in the pulsed mode, High Energy Chem., 2018, vol. 52 (3), p. 272.
  35. Lee, H., Bratescu, M.A., Ueno, T., and Saito, N., Solution plasma exfoliation of graphene flakes from graphite electrodes, RSC Adv., 2014, vol. 4 (93), p. 51758.
  36. Thanh, D.V., Li, L.-J., Chu, C.-W., Yena, P.-J., and Wei, K-H., Plasma-assisted electrochemical exfoliation of graphite for rapid production of graphene sheets, RSC Adv., 2014, 4 (14), p. 6946.
  37. Resmia, P.E., Palaniayappanb, L., Ramachandrana, T., and Satheesh Babu, T.G., Electrochemical synthesis of graphene and its application in electrochemical sensing of glucose, Mater. Today: Proc., 2018, vol. 5 (8), p. 16487.
  38. Yu, P., Lowe, S.E., Simon, G.P., and Zhong, Y.L., Electrochemical exfoliation of graphite and production of functional graphene, Curr. Opin. Colloid Interface Sci., 2015, vol. 20 (5–6), p. 329.
  39. Ju, H.-M., Choi, S.-H., and Huh, S.H., X-ray diffraction patterns of thermally-reduced graphenes, J. Korean Phys. Soc., 2010, vol. 57 (6), p. 1649.
  40. Pham, T.A., Kim, J.S., Kim, J.S., and Jeong, Y.T., One-step reduction of graphene oxide with L-glutathione, Colloids Surf. A, 2011, vol. 384 (1–3), p. 543.
  41. Gurunathan, S., Han, J., and Kim, J.H., Humanin: A novel functional molecule for the green synthesis of grapheme, Colloids Surf. B, 2013, vol. 111, p. 376.