Nanostructured Platinum Catalyst Supported by Titanium Dioxide

V. A. VolochaevV. A. Volochaev, I. N. NovomlinskiiI. N. Novomlinskii, E. M. BayanE. M. Bayan, V. E. GutermanV. E. Guterman
Российский электрохимический журнал
Abstract / Full Text

One of important problems associated with the use of Pt/C electrocatalysts in low-temperature fuel cells is their degradation due to oxidation of the carbon support. The use of noncarbon supports resistant to oxidation, for example, oxides of certain metals in the highest degree of oxidation is a promising direction. TiO2 with the high specific surface area (104 m2/g) is synthesized and used in fabrication of supported platinum catalysts. For Pt/TiO2 and carbon-containing composite Pt/TiO2+C, the electrochemically active surface area of platinum and the their activity in oxygen electroreduction reaction are estimated. The assessed stability of synthesized materials far exceeds the stability of commercial Pt/C catalysts.

Author information
  • Southern Federal University, 344006, Rostov-on-Don, RussiaV. A. Volochaev, I. N. Novomlinskii, E. M. Bayan & V. E. Guterman
  1. Kuzov, A.V., Tarasevich, M.R., and Bogdanovskaya, V.A., Catalysts of ethanol anodic oxidation for ethanol-air fuel cell with a proton-conducting polymer electrolyte, Russ. J. Electrochem., 2010, vol. 46, no. 4, p. 422.
  2. Sharaf, O.Z. and Orhan, M.F., An overview of fuel cell technology: Fundamentals and applications, Renewable Sustainable Energy Rev., 2014, vol. 32, p. 810.
  3. Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012, vol. 81, no. 3, p. 191.
  4. Antolini, E., Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance, Appl. Catal., B, 2016, vol. 181, p. 298.
  5. Antolini, E., Carbon supports for low-temperature fuel cell catalysts, Appl. Catal., B, 2009, vol. 88, nos. 1–2, p. 1.
  6. Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G.F., Ross, P.N., Lucas, C.A., and Markovic, N.M., Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science, 2007, vol. 315, no. 5811, p. 493.
  7. Stamenkovic, V. R., Mun, B.S., Arenz, M., Mayrho-fer, K.J.J., Lucas, C.A., Wang, G.F., Ross, P.N., and Markovic, N.M., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater., 2007, vol. 6, no. 3, p. 241.
  8. Stamenkovic, V., Mun, B.S., Mayrhofer, K.J.J., Ross, P.N., Markovic, N.M., Rossmeisl, J., Greeley, J., and Norskov, J.K., Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure, Angew. Chem., Int. Ed., 2006, vol. 45, no. 18, p. 2897.
  9. Oezaslan, M., Hasche, F., and Strasser, P., Pt-Based core-shell catalyst architectures for oxygen fuel cell electrodes, J. Phys. Chem. Lett., 2013, vol. 4, no. 19, p. 3273.
  10. Chen, A. and Holt-Hindle, P., Platinum-based nanostructured materials: Synthesis, properties, and applications, Chem. Rev., 2010, vol. 110, no. 6, p. 3767.
  11. Ferreira, P.J., la O, G.J., Shao-Horn, Y., Morgan, D., Makharia, R., Kocha, S., and Gasteiger, H.A., Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells – A mechanistic investigation, J. Electrochem. Soc., 2005, vol. 152, no. 11, p. A2256.
  12. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., et al., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, no. 10, p. 3904.
  13. Shao, Y.Y., Yin, G.P., and Gao, Y.Z., Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources., 2007, vol. 171, no. 2, p. 558.
  14. Hodnik, N., Dehm, G., and Mayrhofer, K.J.J., Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research, Acc. Chem. Res., 2016, vol. 49, no. 9, p. 2015.
  15. Kuzov, A.V., Tarasevich, M.R., Bogdanovskaya, V.A., Modestov, A.D., Tripachev, O.V., and Korchagin, O.V., Degradation processes in hydrogen-air fuel cell as a function of the operating conditions and composition of membrane-electrode assemblies, Russ. J. Electrochem., 2016, vol. 52, no. 7, p. 705.
  16. Venkatesan, S.V., Dutta, M., and Kjeang, E., Mesoscopic degradation effects of voltage cycled cathode catalyst layers in polymer electrolyte fuel cells, Electrochem. Commun., 2016, vol. 72, p. 15.
  17. Sharma, S. and Pollet, B.G., Support materials for PEMFC and DMFC electrocatalysts—A review, J. Power Sources., 2012, vol. 208, p. 96.
  18. Bogdanovskaya, V.A., Kol’tsova, E.M., Tarasevich, M.R., Radina, M.V., Zhutaeva, G.V., Kuzov, A.V., and Gavrilova, N.N., Highly active and stable catalysts based on nanotubes and modified platinum for fuel cells, Russ. J. Electrochem., 2016, vol. 52, no. 8, p. 723.
  19. Wang, L., Chen, J., Rudolph, V., and Zhu, Z., Nanotubules-supported Ru nanoparticles for preferential CO oxidation in H2-rich stream, Adv. Powder Technol., 2012, vol. 23, no. 4, p. 465.
  20. Balakhonov, S. V., Vatsadze, S. Z., and Churagulov, B.R., Effect of supercritical drying parameters on the phase composition and morphology of aerogels based on vanadium oxide, Russ. J. Inorg. Chem., 2015, vol. 60, no. 1, p. 9.
  21. Ogi, T., Nandiyanto, A.B.D., and Okuyama, K., Nanostructuring strategies in functional fine-particle synthesis towards resource and energy saving applications, Adv. Powder Technol., 2014, vol. 25, no. 1, p. 3.
  22. Elezovic, N.R., Radmilovic, V.R., and Krstajic, N.V., Platinum nanocatalysts on metal oxide-based supports for low temperature fuel cell applications, RSC Adv., 2016, vol. 6, p. 6788.
  23. Frolova, L.A. and Dobrovolsky, Y.A., Platinum electrocatalysts based on oxide supports for hydrogen and methanol fuel cells, Russ. Chem. Bulletin., 2011, vol. 60, no. 6, p. 1101.
  24. Huang, S.-Y., Ganesan, P., and Popov, B.N., Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell, Appl. Catal., B, 2011, vol. 102, p. 71.
  25. Behafarid, F. and Cuenya, B.R., Coarsening phenomena of metal nanoparticles and the influence of the support pre-treatment: Pt/TiO2(110), Surface Science, 2012, vol. 606, p. 908.
  26. Akalework, N.G., Pan, C.-J., Su, W.-N., Rick, J., Tsai, M.-C., Lee, J.-F., Lin, J.-M., Tsai, L.-D., and Hwang, B.-J., Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs, J. Mater. Chem., 2012, vol. 22, p. 20977.
  27. Esfahani, R.A.M., Videla, A., Vankova, S., and Specchia, S., Stable and methanol tolerant Pt/TiOx-C electrocatalysts for the oxygen reduction reaction, Int. J. Hydrogen Energy, 2015, vol. 40, p. 14529.
  28. Ando, F., Tanabe, T., Gunji, T., Tsuda, T., Kaneko, S., Takeda, T., Ohsaka, T., and Matsumoto, F., Improvement of ORR activity and durability of Pt electrocatalyst nanoparticles anchored on TiO2/cup-stacked carbon nanotube in acidic aqueous media, Electrochim. Acta, 2017, vol. 232, p. 404.
  29. Anwar, M.T., Yan, X., Shen, S., Husnain, N., Zhu, F., Luo, L., and Zhang, J., Enhanced durability of Pt electrocatalyst with tantalum doped titania as catalyst support, Int. J. Hydrogen Energy, 2017, vol. 42, p. 30750.
  30. Bo, Z., Ahn, S., Ardagh, M.A., Schweitzer, N.M., Canlas, C.P., Farha, O.K., and Notestein, J.M., Synthesis and stabilization of small Pt nanoparticles on TiO2 partially masked by SiO2, Appl. Catal., A, 2018, vol. 551, p. 122.
  31. Dhanasekaran, P., Selvaganesh, S.V., Sarathi, L., and Bhat, S.D., Rutile TiO2 supported Pt as stable electrocatalyst for improved oxygen reduction reaction and durability in polymer electrolyte fuel cells, Electrocatalysis, 2016, vol. 7, p. 495.
  32. Kuriganova, A.B., Leontyev, I.N., Alexandrin, A.S., Maslova, O.A., Rakhmatullin, A.I., and Smirnova, N.V., Electrochemically synthesized Pt/TiO2-C catalysts for direct methanol fuel cell applications, Mendeleev Commun., 2017, vol. 27, p. 67.
  33. Mirshekari, G.R. and Rice, C.A., Effects of support particle size and Pt content on catalytic activity and durability of Pt/TiO2 catalyst for oxygen reduction reaction in proton exchange membrane fuel cells environment, J. Power Sources, 2018, vol. 396, p. 606.
  34. Wang, J., Xu, M., Zhao, J., Fang, H., Huang, Q., Xiao, W., Li, T., and Wang, D., Anchoring ultrafine Pt electrocatalysts on TiO2-C via photochemical strategy to enhance the stability and efficiency for oxygen reduction reaction, Appl. Catalysis, B, 2018, vol. 327, p. 228.
  35. Bayan, E.M., Lupeiko, T.G., Pustovaya, L.E., and Fedorenko, A.G., Hydrothermal teo-step synthesis of titanate nanotubes, Springer Proc. Phys., 2016, vol. 175, p. 51.
  36. Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Y., Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and PtAg/C electrocatalysts, Nanotechnologies Russ., 2016, vol. 11, no. 5, p. 287.
  37. Brunauer, S., Emmett, P.H., and Teller, E., Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 1938, vol. 60, no. 2, p. 309.
  38. Alekseenko, A., Ashihina, E., Shpanko, S, Volochaev, V., Safronenko, O., and Guterman, V., Application of CO atmosphere in the liquid phase synthesis as a universal way to control the microstructure and electrochemical performance of Pt/C electrocatalysts, Appl. Catal., B, 2018, vol. 226, p. 608.
  39. Mayrhofer, K.J.J., Blizanac, B.B., Arenz, M., Stamenkovic, V.R., Ross, P.N., and Markovic, N.M., The impact of geometric and surface electronic properties of Pt-catalysts on the particle size in electrocatalysis, J. Phys. Chem., B., 2005, vol. 109, p. 14433.