Статья
2017

Symmetrical solid oxide fuel cell with strontium ferrite-molybdenum electrodes


D. A. Osinkin D. A. Osinkin , S. M. Beresnev S. M. Beresnev , N. I. Lobachevskaya N. I. Lobachevskaya
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517060131
Abstract / Full Text

The work contains the results of studies of a promising composite material of Sr2Fe1.5Mo0.5O6 + Ce0.8Sm0.2O1.9 for electrodes of symmetrical solid oxide fuel cells. It is shown that conductivity of the composite at 800°C is about 10 and 15 S/cm, for air and humid hydrogen, respectively, and polarization resistance of the electrodes in contact with the electrolyte based on doped lanthanum gallate under the same conditions is about 0.26 and 0.12 Ohm cm2. Tests of a symmetrical fuel cell with a planar design and the supporting gallate electrolyte with the thickness of 300 μm show that the cell can develop the power of about 0.5 W/cm2 at 800°C when air is supplied to the cathode and humid hydrogen is supplied to the anode. Analysis of polarization losses shows that the polarization of the oxygen electrode considerably exceeds the polarization of the anode.

Author information
  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    D. A. Osinkin & S. M. Beresnev

  • Ural Federal University, Yekaterinburg, 620002, Russia

    D. A. Osinkin

  • Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620990, Russia

    N. I. Lobachevskaya

References
  1. Liu, Y.L., Thyden, K., Chen, M., and Hagen, A., Solid State Ionics, 2012, vol. 206, p. 97.
  2. Beresnev, S.M., Bobrenok, O.F., Kuzin, B.L., Bogdanovich, N.M., Kurteeva, A.A., Osinkin, D.A., Vdovin, G.K., and Bronin, D.I., Russ. J. Electrochem., 2012, vol. 48, p. 969.
  3. Suntsov, A.Yu., Leonidov, I.A., Patrakeev, M.V., and Kozhevnikov, V.L., Solid State Ionics, 2015, vol. 274, p. 17.
  4. Ishimoto, T., Ito, Y., Tada, T., Oike, R., Nakamura, T., Amezawa, K., and Koyama, M., Solid State Ionics, 2016, vol. 285, p. 195.
  5. Pikalova, E.Yu., Bogdanovich, N.M., Kolchugin, A., Osinkin, D.A., and Bronin, D.I., Procedia Eng., 2014, vol. 98, p. 105.
  6. Lee, Y. and Kim, H., Ceram. Int., 2015, vol. 41, p. 5984.
  7. Kurteeva, A.A., Beresnev, S.M., Osinkin, D.A., Kuzin, B.L., Vdovin, G.K., Zhuravlev, V.D., Bogdanovich, N.M., Bronin, D.I., Pankratov, A.A., and Yaroslavtsev, I.Yu., Russ. J. Electrochem., 2011, vol. 47, p. 1381.
  8. Osinkin, D.A., Bogdanovich, N.M., Beresnev, S.M., and Zhuravlev, V.D., J. Power Sources, 2015, vol. 288, p. 20.
  9. Carter, S., Selcuk, A., Chater, R.J., Kajda, J., Kilner, J.A., and Steel, B.C.H., Solid State Ionics, 1992, vols. 53–56, p. 597.
  10. Petric, A., Huang, P., and Tietz, F., Solid State Ionics, 2000, vol. 135, p. 719.
  11. Osinkin, D.A., Kuzin, B.L., and Bogdanovich, N.M., Russ. J. Electrochem., 2010, vol. 46, p. 41.
  12. Osinkin, D.A., Kuzin, B.L., and Bogdanovich, N.M., Solid State Ionics, 2013, vol. 251, p. 66.
  13. Ananyev, M.V., Bronin, D.I., Osinkin, D.A., Eremin, V.A., Steinberger-Wilckens, R., de Haart, L.G.J., and Mertens, J., J. Power Sources, 2015, vol. 286, p. 414.
  14. Osinkin, D.A. and Bogdanovich, N.M., Russ. J. Electrochem., 2016, vol. 52, p. 606.
  15. Zhang, P., Guan, G., Khaerudini, D.S., Hao, X., Xue, C., Han, M., Kasai, Y., and Abudula, A., J. Power Sources, 2014, vol. 266, p. 241.
  16. Santos-Gomez, L., Compana, J.M., Bruque, S., Losilla, E.R., and Marrero-Lopez, D., J. Power Sources, 2015, vol. 279, p. 419.
  17. Fan, W., Sun, Z., Wang, J., Zhou, J., Wu, K., and Cheng, Y., J. Power Sources, 2016, vol. 312, p. 223.
  18. Shen, J., Chen, Y., Yang, G., Zhou, W., Tade, M.O., and Shao, Z., J. Power Sources, 2016, vol. 306, p. 92.
  19. Chen, Y., Cheng, Z., Yang, Y., Gu, Q., Tian, D., Lu, X., Yu, W., and Lin, B., J. Power Sources, 2016, vol. 310, p. 109.
  20. Liu, Q., Bugaris, D.E., Xiao, G., Chmara, M., Ma, S., Loye, H.C., Amiridis, M.D., and Chen, F., J. Power Sources, 2011, vol. 196, p. 9148.
  21. Dai, N., Wang, Z., Jiang, T., Feng, J., Sun, W., Qiao, J., Rooney, D., and Sun, K., J. Power Sources, 2014, vol. 268, p. 176.
  22. He, B., Zhao, L., Song, S., Liu, T., Chen, F., and Xia, C., J. Electrochem. Soc., 2012, vol. 159, p. B619.
  23. Osinkin, D.A., Int. J. Hydrogen Energy, 2016, vol. 41, p. 17577.
  24. Hou, M., Sun, W., Li, P., Feng, J., Yang, G., Qiao, J., Wang, Z., Rooney, D., Feng, J., and Sun, K., J. Power Sources, 2014, vol. 272, p. 759.
  25. Osinkin, D.A., Bronin, D.I., Beresnev, S.M., Bogdanovich, N.M., Zhuravlev, V.D., Vdovin, G.K., and Demyanenko, T.A., J. Solid State Electrochem., 2014, vol. 18, p. 149.
  26. Plint, S.M., Connor, P.A., Tao, S., and Irvine, J.T.S., Solid State Ionics, 2006, vol. 177, p. 2005.
  27. Zheng, Y., Zhang, C., Ran, R., Cai, R., Shao, Z., and Farrusseng, D., Acta Mater., 2009, vol. 57, p. 1165.
  28. Fu, Q.X., Tietz, F., and Stoever, D., J. Electrochem. Soc., 2006, vol. 153, p. D74.
  29. Miao, G., Yuan, C., Chen, T., Zhou, Y., Zhan, W., and Wang, S., Int. J. Hydrogen Energy, 2016, vol. 41, p. 1004.
  30. Primdahl, S., Hansen, J.R., Grahl-Madsen, L., and Larsen, P.H., J. Electrochem. Soc., 2001, vol. 148, p. A74.
  31. Pudmich, G., Boukamp, B.A., Gonzalez-Cuenca, M., Jungen, W., Zipprich, W., and Tietz, F., Solid State Ionics, 2000, vol. 135, p. 433.
  32. Tao, S.W. and Irvine, J.T.S., Chem. Mater., 2006, vol. 18, p. 5453.
  33. Sauvet, A.L. and Fouletier, J., Electrochim. Acta, 2001, vol. 47, p. 987.
  34. Vernoux, P., Guindet, J., and Kleitz, M., J. Electrochem. Soc., 1998, vol. 145, p. 3487.
  35. Osinkin, D.A., Bogdanovich, N.M., and Gavrilyuk, A.L., Electrochim. Acta, 2016, vol. 199, p. 108.
  36. Xiao, G. and Chen, F., Electrochem. Commun., 2011, vol. 13, p. 57.