Examples



mdbootstrap.com



 
Статья
2022

Extracting Yttrium, Lanthanum, and Europium with Phosphine Oxides of the Hexyl–Octyl Series


V. V. TumanovV. V. Tumanov, P. A. StorozhenkoP. A. Storozhenko, K. D. MagdeevK. D. Magdeev, V. I. ShiryaevV. I. Shiryaev
Российский журнал физической химии А
https://doi.org/10.1134/S0036024422060279
Abstract / Full Text

Samples of mono- and different radical phosphine oxides of the hexyl–octyl series are synthesized according to Grignard and their composition is determined. The extraction of yttrium, lanthanum, and europium from nitric acid media both individually and upon co-presence is studied. The order of change in the extraction properties of alkylphosphine oxides for individual rare-earth metals (REMs) is obtained. The highest percentage of REM extraction is achieved at a nitric acid concentration of ~0.5 M in the aqueous phase. The percentages of individual REM extraction under these conditions are determined to be 90–97% for yttrium, 75–91% for lanthanum, and 93–98% for europium. The percentages of combined extraction were 68–82, 45–62, and 80–88%, respectively. The data suggest that REMs of the yttrium group can be separated from those of the cerium group, and this can be used in preparing pure REMs.

Author information
  • State Research Institute of the Chemistry and Technology of Organoelement Compounds, 105118, Moscow, RussiaV. V. Tumanov, P. A. Storozhenko, K. D. Magdeev & V. I. Shiryaev
References
  1. N. G. Feshchenko, L. F. Irodionova, O. I. Korol’, et al., Zh. Obshch. Khim. 40, 773 (1970).
  2. W. A. Rickelton and A. J. Robertson, US Patent No. US4909939A (1990).
  3. E. R. G. De, and M. Jean-Claude, GB Patent No. GB1376028A (1972).
  4. N. G. Zhukova, L. I. Sokal’skaya, I. V. Pastukhova, et al., RF Patent No. RU2032691 (1995).
  5. E. Dziwinski and J. Szymanowski, Solvent Extract. Ion Exchange 16, 1515 (1998). https://doi.org/10.1080/07366299808934592
  6. W. Li, X. Wang, H. Zhang, et al., J. Chem. Technol. Biotechnol. 82, 376 (2007). https://doi.org/10.1002/jctb.1680
  7. A. Ali, Radiochim. Acta 92, 925 (2004). https://doi.org/10.1524/ract.92.12.925.55102
  8. B. Gupta, P. Malik, and A. Deep, Solvent Extract. Ion Exchange 21, 239 (2003). https://doi.org/10.1081/SEI-120018948
  9. E. Padhan and K. Sarangi, Mineral Process. Extract. Metall. 128, 168 (2017). https://doi.org/10.1080/03719553.2017.1381815
  10. Y. Kulyako, D. Malikov, T. Trofimov, et al., J. Nucl. Sci. Technol. 39 (Suppl. 3), 302 (2002). https://doi.org/10.1080/00223131.2002.10875468
  11. I. Y. Fleitlikh, N. A. Grigorieva, L. K. Nikiforova, et al., Hydrometallurgy 169, 585 (2017). https://doi.org/10.1016/j.hydromet.2017.04.004
  12. I. Yu. Fleitlikh, N. A. Grigorieva, L. K. Nikiforova, et al., Sep. Sci. Technol. 59, 1521 (2017).https://doi.org/10.1080/01496395.2017.1291682
  13. J. C. Shafer, J. Sulakova, M. D. Ogden, et al., Sep. Purif. Technol. 202, 157 (2018). https://doi.org/10.1016/j.seppur.2018.03.029
  14. P. P. Aung, O. A. Veselova, and I. D. Troshkina, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 60, 28 (2017). https://doi.org/10.6060/tcct.2017608.5646
  15. H. K. Haghighi, M. Irannajad, A. Fortuny, et al., Hydrometallurgy 175, 164 (2018). https://doi.org/10.1016/j.hydromet.2017.11.006
  16. F. J. Alguacil, M. Alonso, F. A. Lopez, et al., Solvent Extract. Ion Exchange 30, 54 (2012). https://doi.org/10.1080/07366299.2011.609369
  17. F. Kaŝpárek, Z. Trávnicek, M. Posolda, et al., J. Coord. Chem. 44, 61 (1998). https://doi.org/10.1080/00958979808022880
  18. C. Tunsu, C. Ekberg, M. Foreman, et al., Solvent Extract. Ion Exchange 32, 650 (2014). https://doi.org/10.1080/07366299.2014.925297
  19. G. D. Fulford, G. Lever, and T. Sato, US Patent No. US5030424A (1991).