Статья
2019

Aluminum(III)-Selective Screen Printed Sensor Based on Methyl Red


 Eman Yossri Frag Eman Yossri Frag , Marwa E. Mohamed Marwa E. Mohamed , Yasser Samy Yasser Samy
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519090076
Abstract / Full Text

Modified screen printed electrode (MSPE) with 2-[[4-(dimethyl amino) phenyl] diazenyl] benzoic acid (Methyl Red) was prepared for determination of aluminum ions in water and pharmaceutical (Maalox and Epicogel) samples. The MSPE reveals linear response over a wide concentration range of 5.0 × 10–6–1.0 × 10–2 mol L–1 of aluminum at 25°C with a trivalent cationic slope of 20.4 ± 0.5 mV decade–1 with detection limit 5.0 × 10–6 mol L–1 in pH range 3–5. Moreover, the mechanism of chemical reaction between Methyl Red and aluminum ions on the sensor surface was studied using IR spectra, energy dispersive X-ray analysis (EDX) and scanning electron microscope (SEM). The prepared sensor also showed reproducible and stable response over a period of 14 week with fast response time about 5 s. The proposed potentiometric method was validated according to the IUPAC recommendations. The results obtained from the proposed sensor were comparable with those obtained with inductively coupled plasma mass spectrometry (ICP–MS).

Author information
  • Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt

    Eman Yossri Frag, Marwa E. Mohamed & Yasser Samy

References
  1. Campbell, A., The potential role of aluminum in Alzheimer’s disease, Nephrol Dial Transplant., 2002, vol. 17, pp. 17–20.
  2. Kawahara, M., Muramoto, K., Kobayashi, K., Mori, H., and Kuroda, Y., Aluminum promotes the aggregation of Alzheimer’s amyloid beta-protein in vitro, Biochem. Biophys. Res. Commun., 1994, vol. 198, p. 531.
  3. Paik, S.R., Lee, J.H., Kim, D.H., Chang, C.S., and Kim, J., Aluminum-induced structural alterations of the precursor of the non-A beta component of Alzheimer’s disease amyloid, Arch. Biochem. Biophys., 1997, vol. 344, p. 325.
  4. Lin, J.L., Kou, M.T., and Leu, M.L., Effect of long-term low-dose aluminum-containing agents on hemoglobin synthesis in patients with chronic renal insufficiency, Nephron, 1996, vol. 74, p. 33.
  5. Good, P.F., Olanow, C.W., and Perl, D.P., Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study, Brain Res., 1992, vol. 593, p. 343.
  6. Malik, J., Frankova, A., Drabek, O., Szakova, J., Ash, C., and Kokoska, L., Aluminum and other elements in selected herbal tea plant species and their infusions, Food Chem., 2013, vol. 139, p. 728.
  7. Scancar, J., Stibilj, V., and Milacic, R., Determination of aluminum in Slovenian foodstuffs and its leachability from aluminum cookware, Food Chem., 2004, vol. 85, p. 151.
  8. López, F.F., Cabrera, C., Lorenzo, M.L., and López, M.C., Aluminum content of drinking waters, fruit juices and soft drinks: contribution to dietary intake, Sci. Total Environ., 2002, vol. 292, p. 205.
  9. Jalbani, N., Kazi, T.G., Jamali, M.K., Arainm, B.M., Afridi, H.I., and Baloch, A., Evaluation of aluminum contents in different bakery foods by electrothermal atomic absorption spectrometer, J. Food Comp. Anal., 2007, vol. 20, p. 226.
  10. Bamji, N.M.S. and Kaladhar, M., Risk of increased aluminum burden in the Indian population contribution from aluminum cookware, Food Chem., 2000, vol. 70, p. 57.
  11. Arvand, M. and Asadollahzade, S.A., Ion selective electrode for aluminum determination in pharmaceutical substances, tea leaves and water samples, Talanta, 2008, vol. 75, p. 1046.
  12. Soleimani, M. and Afshar, M.G., Octaethylporphyrin as an ionophore for aluminum potentiometric sensor based on carbon paste electrode, Russ. Elektrokhim., 2014, vol. 50, p. 554.
  13. Kumar, R.H., Rani, S., and Malik, A., Development of a rapid and sensitive method for the determination of aluminum by reverse phase high performance liquid chromatography using a f luorescence detector, J. Chromatogr. Sci., 2014, vol. 53, p. 800.
  14. Beltagiand, A.M. and Ghoneim, M.M., Simultaneous determination of trace aluminum (III), copper (II) and cadmium (II) in water samples by square wave adsorptive cathodic stripping voltammetry in the presence of oxine, J. Appl. Electrochem., 2009, vol. 39, p. 627.
  15. Mersal, G.A.M. and Arida, H.A., New carbon paste modified micro electrode based on haematoxylin for determination of aluminum in underground water, Int. J. Electrochem. Sci., 2011, vol. 6, p. 1116.
  16. Liu, J., Bi, S., Yang, L., Gu, X., Ma, P., Gan, N., Wang, X., Longa, X., and Zhanga, F., Speciation analysis of aluminum(III) in natural waters and biological fluids by complexing with various catechols followed by differential pulse voltammetry detection, Anal., 2002, vol. 12, p. 1657.
  17. Tajik, S., Taherand, M.A., and Sheikhshoaie, I., Potentiometric determination of trace amounts of aluminum utilizing polyvinyl chloride membrane and coated platinum sensors based on E-N'-(2-hydroxy-3-methoxy-benzylidene) benzohydrazide, J. AOAC Int., 2013, vol. 96, p. 1204.
  18. Bera, R.K., Sahoo, S.K., Mittal, S.K., and Kumar, A.S.K., An imidazol based novel potentiometric PVC membrane sensor for aluminum(III) determination, Int. J. Electrochem. Sci., 2010, vol. 5, p. 29.
  19. Li, Y., Chai, Y., Yuan, R., Liang, W., Zhang, L., and Ye, G., Aluminum(III) selective electrode based on a newly synthesized glyoxal-bis-thiosemicarbazone Schiff base, J. Anal. Chem., 2008, vol. 63, p. 1090.
  20. Evsevleeva, L., Bykova, L., and Badenikov, V., Aluminum selective electrode, J. Anal. Chem., 2005, vol. 60, no. 9, p. 866.
  21. Abd El-Ghany, N.A., Frag, E.Y., and Abd El Fattah, M., Fabrication of chemically modified carbon paste electrode based on functionalized biopolymer for potentiometric determination of Al(III) ion in real water and pharmaceutical samples, J. Iran. Chem. Soc., 2018, vol. 15, p. 1987.
  22. Bratovčić, A., Odobašić, A., and Ćatić, S., The advantages of the use of ion selective potentiometry in relation to UV/Vis spectroscopy, Agricult. Consp. Sci., 2009, vol. 3, p. 139.
  23. Nour El Dein, F.A., Mohamed, G.G., Frag, E.Y.Z., and Mohamed, M.E., Modified screen printed and carbon paste ion selective electrodes for potentiometric determination of naphazoline hydrochloride in pure and pharmaceutical preparations, Int. J. Electrochem. Sci., 2012, vol. 7, p. 10266.
  24. (a) Frag, E.Y., Mohamed, M.E., and Fahim, E.M., Application of carbon sensors for potentiometric determination of copper(II) in water and biological fluids of Wilson disease patients. Studying the surface reaction using SEM, EDX, IR and DFT, Biosens. Bioelectron., 2018, vol. 118, p. 122.
  25. (b) Frag, E.Y., Omar, M.M., and Mohamed, H. A., Electrochemical characterization of vanadium(V) sensors modified with 2,4-dinitrophenyl hydrazine. Studying the reaction mechanism using SEM and IR, J. Electroanal. Chem., 2017, vol. 784, p. 124.
  26. (c) Frag, E.Y., Aglan, R.F., and Mohamed, H.A., Lanthanum(III) potentiometric sensors based on ethyl benzoyl acetate, Arab. J. Chem., 2016, vol. 12, no. 3.
  27. (a) Frag, E.Y.Z., Mohamed, G.G., and El-Sayed, W.G., Potentiometric determination of antihistaminic diphenhydramine hydrochloride in pharmaceutical preparations and biological fluids using screen-printed electrode, Bioelectrochemistry, 2011, vol. 82, p. 79.
  28. (b) Frag, E.Y.Z., Mohamed, G.G., Nour El-Dien, F.A., and Mohamed, M.E., Construction and performance characterization of screen printed and carbon paste ion selective electrodes for potentiometric determination of naphazoline hydrochloride in pharmaceutical preparations, Analyst, 2011, vol. 136, p. 332.
  29. (c) Nour El Dien, F.A., Mohamed, G.G., Frag, E.Y.Z., and Mohamed, M.E., Modified screen printed and carbon paste ion selective electrodes for potentiometric determination of naphazoline hydrochloride in pure and pharmaceutical preparations, Int. J. Electrochem. Sci., 2012, vol. 7, p. 10266.
  30. Jarad, A.J., Synthesis and characterization of new azo dye complexes with selected metal ions, J. Al Nahrain Univ., 2012, vol. 15, no. 4, p. 74.
  31. Recommendations for nomenclature of ion-selective electrodes, Pure Appl. Chem., 1976, vol. 48, p. 127.
  32. Antropov, L.I., Theoretical Electrochemistry, Moscow: Mir, 1972.
  33. Umezawa, Y., Umezawa, K., and Sato, H., Selectivity coefficients for ion-selective electrodes: recommended methods for reporting KA,Bpot values, Pure Appl. Chem., 1995, vol. 67, no. 3, p. 507.
  34. Arvand, M. and Asadollahzadeh, S.A., Ion selective electrode for aluminum determination in pharmaceutical substances, tea leaves and water samples, Talanta, 2008, vol. 75, p. 1046.
  35. Pourfarkhani, M.E., Rounaghi, G.H., and Arbab Zavar, M.H., Construction of a new aluminum(III) cation selective electrode based on 12-crown-4 as an ionophore J. Braz. Chem. Soc., 2015, vol. 26, no. 5, p. 963.
  36. Abbaspour, A., Esmaeilbeig, A.R., Jarrahpour, A.A., Khajeh, B., and Kia, R., Aluminum(III)-selective electrode based on a newly synthesized tetradentate Schiff base, Talanta, 2002, vol. 58, p. 397.
  37. Yao, H., Wang, S., Ma, X., Ren, L., and Yan, F., A novel aluminum(III)-selective PVC membrane electrode based on a Schiff base complex of bis(5-sulphonate salicylaldehyde) 2,3-diaminobenzene, Int. J. Electrochem. Sci., 2014, vol. 9, p. 2158.
  38. Mohamed, M.E., Modified carbon paste electrode for potentiometric determination of aluminum ion in spiked real water sample, Russ. Elektrokhim., 2016, vol. 52, no. 8, p. 843.