Electrochemical Determination of Sertraline at Screen Printed Electrode Modified with Feather Like La3+/ZnO Nano-Flowers and Its Determination in Pharmaceutical and Biological Samples

 Somyeh Tajik Somyeh Tajik ,  Hadi Beitollahi Hadi Beitollahi
Российский электрохимический журнал
Abstract / Full Text

In this paper, the use of a screen printed electrode modified by feather like La3+/ZnO nano-flowers for the determination of sertraline was described. These nano-flowers showed satisfactory catalytic activity for determination of sertraline by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. At the optimum pH of 7.0, the oxidation of sertraline occured at a potential about 280 mV less positive than that of an unmodified screen printed electrode. Based on DPV, the oxidation of sertraline exhibited a dynamic range between 0.5 and 150.0 µM and a detection limit (3σ) of 0.15 ± 0.01 µM. The modified electrode had a good performance for sertraline detection in real samples by the standard addition method.

Author information
  • Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran

    Somyeh Tajik

  • Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran

    Somyeh Tajik

  • Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

    Hadi Beitollahi

  1. Mahmoudi Moghaddam, H.M., Tajik, S., and Beitollahi, H., Highly sensitive electrochemical sensor based on La3+-doped Co3O4 nanocubes for determination of Sudan I content in food samples, Food Chem., 2019, vol. 286, p. 191.
  2. Promphet, N., Rattanarat, P., Rangkupan, R., Chailapakul, O., and Rodthongkum, N., An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium, Sens. Actuat. B: Chem., 2015, vol. 207, p. 526.
  3. Santos, V.B., Luiz Fava, E., Miranda Curi, N.S., Censi Faria, R., Guerreiro, T.B., and Fatibello-Filho, O., An electrochemical analyzer for in situ flow determination of Pb(II) and Cd(II) in lake water with on-line data transmission and a global positioning system, Anal. Methods, 2015, vol. 7, p. 3105.
  4. Liua, H., Wana, X., Liub, T., Lib, Y., and Yaob, Y., Cascade sensitive and selective fluorescence OFF-ON-OFF sensor for Cr3+ cation and F- anion, Sens. Actuat. B: Chem., 2014, vol. 200, p. 191.
  5. Abdel Aziza, A.A. and Sedab, S.H., Detection of trace amounts of Hg2+ in different real samples based on immobilization of novel unsymmetrical tetradentate schiff base within PVC membrane, Sens. Actuat. B: Chem., 2014, vol. 197, p. 155.
  6. Xia, D.H., Wang, H.H., Wang, K., Fu, C.W., and Wang, J.H., A novel electrochemical noise sensor applied to detect food safety, Russ. J. Electrochem., 2014, vol. 50, p. 599.
  7. Zhu, X., Feng, C., Ye, Z., Chen, Y., and Li, G., Fabrication of magneto-controlled moveable architecture to develop reusable electrochemical biosensors, Sci. Rev., 2014, vol. 4, p. 4169.
  8. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2‑(4-oxo-3-phenyl-3, 4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.
  9. Beitollahi, H., Ghofrani Ivari, S., and Torkzadeh-Mahani, M., Application of antibody nanogold ionic liquid carbon paste electrode for sensitive electrochemical immunoassay of thyroid stimulating hormone, Biosens. Bioelectron., 2018, vol. 110, p. 97.
  10. Beitollahi, H., Nekooei, S., and Torkzadeh-Mahani, M., Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste electrode, Talanta, 2018, vol. 188, p. 701.
  11. Beitollahi, H., Tajik, S., Aflatoonian, M.R., and Makarem, A., NiFe2O4 nanoparticles modified screen printed electrode for simultaneous determination of serotonin and norepinephrine, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 1399.
  12. Tajik, S. and Beitollahi, H., A sensitive chlorpromazine voltammetric sensor based on graphene oxide modified glassy carbon electrode, Anal. Bioanal. Chem. Res., 2019, vol. 6, p. 171.
  13. Ganjali, M.R., Dourandish, Z., Beitollahi, H., Tajik, S., Hajiaghababaei, L., and Larijani, B., Highly sensitive determination of theophylline based on graphene quantum dots modified electrode, Int. J. Electrochem. Sci., 2018, vol. 13, p. 2448.
  14. Beitollahi, H., Safaei, M., and Tajik, S., Different electrochemical sensors for determination of dopamine as neurotransmitter in mixed and clinical samples: a review, Anal. Bioanal. Chem. Res., 2019, vol. 6, p. 81.
  15. Tajik, S., Beitollahi, H., and Biparva, P., Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite, J. Serb. Chem. Soc., 2018, vol. 83, p. 863.
  16. Cheng, H., Liang, J., Zhang, Q., and Tu, Y., The electrochemical behavior and oxidation mechanism of sertraline on a rutin modified electrode, J. Electroanal. Chem., 2012, vol. 674, p. 7.
  17. Tajik, S., Taher, M.A., and Beitollahi, H., Mangiferin DNA biosensor using double-stranded DNA modified pencil graphite electrode based on guanine and adenine signals, J. Electroanal. Chem., 2014, vol. 720, p. 134.
  18. Ganjali, M.R., Beitollahi, H., Zaimbashi, R., Tajik, S., Rezapour, M., and Larijani, B., Voltammetric determination of dopamine using glassy carbon electrode modified with ZnO/Al2O3 nanocomposite, Int. J. Electrochem. Sci., 2018, vol. 13, p. 2519.
  19. Eap, C.B., Bouchoux, G., Amey, M., Cochard, N., Savary, L., and Baumann, P., Simultaneous determination of human plasma levels of citalopram, paroxetine, sertraline, and their metabolites by gas chromatography mass spectrometry, J. Chromatogr. Sci., 1998, vol. 36, p. 365.
  20. Ramirez, A.J., Mottaleb, M.A., Brooks, B.W., and Chambliss, C.K., Analysis of pharmaceuticals in fish using liquid chromatography-tandem mass spectrometry, Anal. Chem., 2007, vol. 79, p. 3155.
  21. Lacassie, E., Gaulier, J.M., Marquet, P., Fabatel, J.F., and Lachâtre, G., Methods for the determination of seven selective serotonin reuptake inhibitors and three active metabolites in human serum using high-performance liquid chromatography and gas chromatography, J. Chromatogr. B, 2000, vol. 742, p. 229.
  22. Lajeunesse, A., Gagnon, C., and Sauvé, S., Determination of basic antidepressants and their Ndesmethyl metabolites in raw sewage and wastewater using solid-phase extraction and liquid chromatography-tandem mass spectrometry, Anal. Chem., 2008, vol. 80, p. 5325.
  23. Schultz, M.M. and Furlong, E.T., Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS, Anal. Chem., 2008, vol. 80, p. 1756.
  24. Vela, M.H., Quinaz Garcia, M.B., and Montenegro, M.C., Electrochemical behavior of sertraline at a hanging mercury drop electrode and its determination in pharmaceutical products, Fresen. J. Anal. Chem., 2001, vol. 369, p. 563.
  25. Nouws, H.P.A., Matos, C.D., Barros, A.A., and Rodrigues, J.A., Electroanalytical study of the antidepressant sertraline, J. Pharm. Biomed. Anal., 2005, vol. 39, p. 290.
  26. Arvand, M. and Hashemi, M., Synthesis by precipitation polymerization of a molecularly imprinted polymer membrane for the potentiometric determination of sertraline in tablets and biological fluids, J. Braz. Chem. Soc., 2012, vol. 23, p. 392.
  27. Das, R.S. and Agrawal, Y.K., Spectrofluorometric analysis of new-generation antidepressant drugs in pharmaceutical formulations, human urine, and plasma samples, Spectrosc.-Int. J., 2012, vol. 27, p. 59.
  28. Khater, M.M., Issa, Y.M., Hassib, H.B., and Mohammed, S.H., Dynamic potential and surface morphology study of sertraline membrane sensors, J. Adv. Res., 2015, vol. 6, p. 459.
  29. Meenatchi, B., Sathiya Lakshmi, V., Manikandan, A., Renuga, V., Sharmila, A., Nandhine Deve, K.R., and Kumar Jaganathan, S., Protic ionic liquid assisted synthesis and characterization of ferromagnetic cobalt oxide nanocatalyst, J. Inorg. Organomet. Polym., 2017, vol. 27, p. 446.
  30. Kolotygin, V.A., Tsipis, E.V., Markov, A.A., Patrakeev, M.V., Waerenborgh, J.C., Shaula, A.L., and Kharton, V.V., Transport and electrochemical properties of SrFe(Al, Mo)O3, Russ. J. Electrochem., 2018, vol. 54, p. 514.
  31. Manikandan, A., Durka, M., and Arul Antony, S., A novel synthesis, structural, morphological, and opto-magnetic characterizations of magnetically separable spinel CoxMn1 - xFe2O4 nano-catalysts, J. Supercond. Nov. Magn., 2014, vol. 27, p. 2841.
  32. Beitollahi, H. and Garkani Nejad, F., Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode, Electroanalys, 2016, vol. 28, p. 2237.
  33. Zhu, J.F. and Zhu, Y.J., Microwave-assisted one-step synthesis of polyacrylamide-metal (M = Ag, Pt, Cu) nanocomposites in ethylene glycol, J. Phys. Chem. B, 2006, vol. 110, p. 8593.
  34. Selvam, N.C.S., Manikandan, A., John Kennedy, L., and Judith Vijaya, J., Comparative investigation of zirconium oxide (ZrO2) nano and microstructures for structural, optical and photocatalytic properties, J. Colloid Interface Sci., 2013, vol. 389, p. 91.
  35. Kennedy, J., Murmu, P.P., Leveneur, J., Markwitz, A., and Futter, J., Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment, Appl. Surf. Sci., 2016, vol. 367, p. 52.
  36. Manikandan, E., Kennedy, J., Kavitha, G., Kaviyarasu, K., Maaza, M., Panigrahi, B.K., and Kamachi Mudali, U., Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications, J. Alloys Compd., 2015, vol. 647, p. 141.
  37. Kennedy, J., Sundrakannan, B., Katiyar, R.S., Markwitz, A., Li, Z., and Gao, W., Raman scattering investigation of hydrogen and nitrogen ion implanted ZnO thin films, Curr. Appl. Phys., 2008, vol. 8, p. 291.
  38. Murmu, P.P., Kennedy, J., Williams, G.V.M., Ruck, B.J., Granville, S., and Chong, S.V., Observation of magnetism, low resistivity, and magnetoresistance in the near-surface region of Gd implanted ZnO, Appl. Phys. Lett., 2012, vol. 101, p. 082408.
  39. Kennedy, J., Williams, G.V.M., Murmu, P.P., and Ruck, B.J., Intrinsic magnetic order and inhomogeneous transport in Gd-implanted zinc oxide, Phys. Rev. B, 2013, vol. 88, p. 214423.
  40. Sathyaseelan, B., Manikandan, E., Sivakumar, K., Kennedy, J., and Maaza, M., Enhanced visible photoluminescent and structural properties of ZnO/KIT-6 nanoporous materials for white light emitting diode (w-LED) application, J. Alloy Compd., 2015, vol. 651, p. 479.
  41. Ansari, A.A., Kaushik, A., Solanki, P.R., and Malhotra, B.D., Nanostructured zinc oxide platform for mycotoxin detection, Bioelectrochemistry, 2010, vol. 77, p. 75.
  42. Pal, E., Hornok, V., Kun, R., Chernyshev, V., Seemann, T., Dekany, I., and Busse, M., Growth of raspberry-, prism- and flower-like ZnO particles using template-free low-temperature hydrothermal method and their application as humidity sensors, J. Nanopart. Res., 2012, vol. 14, p. 1002.
  43. Bard, A. and Faulkner, L., Electrochemical Methods Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.
  44. Izadyar, A., Arachchige, D.R., Cornwell, H., and Harshberger, J.C., Ion transfer stripping voltammetry for the detection of nanomolar levels of fluoxetine, citalopram, and sertraline in tap and river water samples, Sens. Actuat. B, 2016, vol. 223, p. 226.
  45. Iwuoha, E., Ngece, R., Klink, M., and Baker, P., Amperometric responses of CYP2D6 drug metabolism nanobiosensor for sertraline: a selective serotonin reuptake inhibitor, IET Nanobiotechnol., 2007, vol. 1, p. 62.
  46. Shoja, Y., Rafati, A.A., and Ghodsi, J., Electropolymerization of Ni-LD metallopolymers on gold nanoparticles enriched multi-walled carbon nanotubes as nano-structure electrocatalyst for efficient voltammetric sertraline detection in human serum, Electrochim. Acta, 2016, vol. 203, p. 281.