
New Solid Electrolyte Li8– xZr1 –xTaxO6 (x = 0–0.5) for Lithium Power Sources




Российский электрохимический журнал
https://doi.org/10.1134/S1023193519090118
In the work, new lithium-conducting solid electrolytes based on lithium zirconate are synthesized. They are obtained by doping Li8ZrO6 phase with isostructural Li7TaO6. It is shown that in the Li8– xZr1– xTaxO6 system, a series of solid solutions х = 0−0.5 based on Li8ZrO6 form. The conductivity of synthesized Li8 ‒ xZr1 – xTaxO6 solid solutions increases by 1–2 orders of magnitude as compared with undoped zirconate Li8ZrO6 due to the formation of lithium vacancies in the tetra- and octahedral layers of the structure. All-solid-phase electrochemical cells with Li7.85Zr0.85Ta0.15O6 electrolyte, 0.75Li2SnMo3O12 ∙ 0.25B2O3 glass-ceramic anode, and 0.2Li2O · 0.2LiF · 0.45V2O5 · 0.25B2O3 cathode are electrochemically tested. It is shown that the resistance of 0.75Li2SnMo3O12 · 0.25B2O3|Li7.85Zr0.85Ta0.15O6|0.2Li2O · 0.2LiF · 0.45V2O5 · 0.25B2O3 cell decreases after the charge—discharge cycling.
- Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620137, Yekaterinburg, RussiaM. I. Pantyukhina, S. V. Plaksin, N. S. Saetova & A. A. Raskovalov
- Tian, Y.J., Ding, F., Zhong, H., Liu, C., He, Y.B., Liu, J.Q., and Xu, Q., Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries, Energy Storage Materials, 2018, vol. 14, p. 49.
- Takada, K., Progress in solid electrolytes toward realizing solid-state lithium batteries, J. Power Sources, 2018, vol. 394, p. 74.
- Li, L., Liu, S., Xue, X., and Zhou, H., Effects of rough interface on impedance of solid LiPON in MIM cells, Ionics, 2018, vol. 24, p. 351.
- Saetova, N.S., Raskovalov, A.A., Antonov, B.D., Yaroslavtseva, T.V., Reznitskikh, O.G., and Kadyrova, N.I., The influence of lithium oxide concentration on the transport properties of glasses in the Li2O–B2O3–SiO2 system, J. Non-Crystalline Solids, 2016, vol. 443, p. 75.
- Kato, A., Kowada, H., Deguchi, M., Hotehama, C., Hayashi, A., and Tatsumisago, M., XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries, Solid State Ionics, 2018, vol. 322, p. 1.
- Choi, S., Lee, S., Park, J., Nichols, W., and Shin, D. Facile synthesis of Li2S–P2S5 glass-ceramics electrolyte with micron range particles for all-solid-state batteries via a low-temperature solution technique (LTST), Appl. Surface Sci., 2018, vol. 444, p. 10.
- Yu, K., Gu, R., Wu, L., Sun, H., Ma, R., Jin, L., Xu, Y., Xu, Z., and Wei, X., Ionic and electronic conductivity of solid electrolyte Li0.5La0.5TiO3 doped with LiO2–SiO2–B2O3 glass, J. Alloy. Compd., 2018, vol. 739, p. 892.
- Tang, W., Tang, S., Zhang, C., Ma, Q., Xiang, Q., Yang, Y-W., and Luo, J., Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets, Adv. Energy Mater., 2018, vol. 8.https://doi.org/10.1002/aenm.201800866
- Tong, Y., Lyu, H., Xu, Y., Thapaliya, B.P., Li, P., Sun, X-G., and Dai, S., All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries, J. Mater. Chem. A, 2018, vol. 6, p. 14847.
- Li, C., Yue, H., Wang, Q., Li, J., Zhang, J., Dong, H., Yin, Y., and Yang, S., A novel composite solid polymer electrolyte based on copolymer P (LA-co-TMC) for all-solid-state lithium ionic batteries, Solid State Ionics, 2018, vol. 321, p. 8.
- Lavrova, G.V., Ponomareva, G.V., Ponomarenko, I.V., Kirik, S.D., and Uvarov, N.F., Nanocomposite proton conductors containing mesoporous oxides as the promising fuel cell membranes, Russ. J. Electrochem., 2014, vol. 50, p. 603.
- Il’ina, E.A., Raskovalov, A.A., Saetova, N.S., Antonov, B.D., and Reznitskikh, O.G., Composite electrolytes Li7La3Zr2O12–glassy Li2O–B2O3–SiO2, Solid State Ionics, 2016, vol. 296, p. 26.
- Pershina, S.V., Il’ina, E.A., and Reznitskikh, O.G., Phase composition, density, and ionic conductivity of the Li7La3Zr2O12-based composites with LiPO3 glass addition, Inorg. Chem., 2017, vol. 56, p. 9880.
- Il’ina, E.A., Raskovalov, A.A., Antonov, B.D., Pankratov, A.A., Reznitskikh, O.G., Composite electrolytes ceramic Li7La3Zr2O12/glassy Li2O–Y2O3–SiO2, Mater. Res. Bull., 2017, vol. 93, P. 157.
- Il’ina, E.A., Pershina, S.V., Antonov, B.D., Pankratov, A.A., and Vovkotrub, E.G., The influence of the glass additive Li2O–B2O3–SiO2 on the phase composition, conductivity, and microstructure of the Li7La3Zr2O12, J. Alloy. Compd., 2018, vol. 765, p. 841.
- Keller, M., Varzi, A., and Passerini, S., Hybrid electrolytes for lithium metal batteries, J. Power Sources, 2018, vol. 392, p. 206.
- Chen, S., Wen, K., Fan, J., Bando, Y., and Golberg, D., Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes, J. Mater. Chem. A, 2018, vol. 6, p. 11631.
- Atovmyan, L.O. and Ukshe, E.A., in Fizicheskaya khimiya. Sovremennye problemy (Physical Chemistry. Modern Problems), Moscow: Khimiya, 1983, p. 92–115.
- Batalov, N.N., Zheltonozhko, O.V., Zarembo, S.N., Akhmetzyanov, T.M., Volkova, O.V., Zelyutin, G.V., and Obrosov, V.P., Solid-electrolyte separators based on double nitrides for high-temperature lithium batteries, Russ. J. Electrochem., 1995, vol. 31, p. 285.
- Hellstrom, E.E. and van Gool, W., Li-ion conductivity in Li2ZrO3; Li4ZrO4 and LiScO2, Rev. Chim. Miner., 1980, vol. 17, p. 263.
- Muhle, C., Dinnebier, R.E., Wullen, L., Schwering, G., and Jansen, M., New insights into the structural and dynamical features of lithium hexaoxometalates Li7MO6 (M = Nb, Ta, Sb, Bi), Inorg. Chem., 2004, vol. 43, p. 874.
- Andreev, O.L., Batalov, N.N., and Sofronova, T.V., On thermodynamic stability of electrolytes based on lithium oxide compounds and oxides of Al, Be, Zr, Sc, Y to lithium metal, Elektrokhim.Energetika, 2002, vol. 2, no. 2, p. 61.
- Moiseev, G.K. and Vatolin, N.A., Interaction of lithium zirconates with lithium under equilibrium conditions, Doklady Phys. Chem., 2003, vol. 388, p. 33.
- Pantyukhina, M.I., Andreev, O.L., Antonov, B.D., and Batalov, N.N., Synthesis and electrical properties of lithium zirconates, Russ. J. Inorg. Chem., 2002, vol. 47, p. 1526.
- JCPDS (Joint Committee of Powder Diffraction Standards), 2003.
- Chebotin, V.N. and Perfil’ev, M.V., Elektrokhimiya tverdykh elektrolitov (Electrochemistry of solid electrolytes), Moscow: Khimiya, 1978.
- Duan, Yu., Structural and electronic properties of Li8ZrO6 and its CO2 capture capabilities: an ab initio thermodynamic approach, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 9752.
- Bukun, N.G., Ukshe, A.E., and Ukshe, E.A., Frequency impedance analysis and determination of equivalent circuit elements in systems with solid electrolytes, Russ. J. Electrochem., vol. 29, p. 96.
- Pantyukhina, M.I., Shchelkanova, M.S., and Plaksin, S.V., Synthesis and electrochemical properties of Li8 –xZr1 –xNbxO6 solid solutions, Phys. Solid State, 2013, vol. 55, p. 707.
- McKnight, M., Whitmore, K.A., Bunton, P.H., Baker, D.B., Vennerberg, D.C., and Feller, S.A., EPR study of RLi2O · V2O5, RNa2O · V2O5, RCaO · V2O5 and RBaO · V2O5 modified vanadate glass system, J. Non-Cryst. Solids, 2010, vol. 356, p. 2268.
- Saetova, N.S., Raskovalov, A.A., Antonov, B.D., Yaroslavtseva, T.V., Reznitskikh, O.G., Zabolotskaya, E.V., Kadyrova, N.I., and Telyatnikova, A.A., Conductivity and spectroscopic studies of Li2O–V2O5–B2O3 glasses, Ionics, 2018, vol. 24, p. 1929.
- Il’ina, E.A., Saetova, N.S., and Raskovalov, A.A., All-solid-state battery Li–Ga–Ag|Li7La3Zr2O12 + Li2O–Y2O3–SiO2|Li2O–V2O5–B2O3, Russ. J. Appl. Chem., 2016, vol. 89, p. 1434.
- Raskovalov, A.A., Il’ina, E.A., Saetova, N.S., and Pershina, S.V., The all-solid-state battery with vanadate glass—ceramic cathode, Ionics, 2018, vol. 24, p. 3299.
- Iriyama, Ya. and Kako, T., Charge transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium cobalt oxide thin film interface, Solid State Ionics, 2005, vol. 176, p. 2371.
- Kotobuki, M. and Kanamura, K., Fabrication of all-solid-state battery using Li5La3Ta2O12 ceramic electrolyte, Ceram. Int., 2013, vol. 39, p. 6481.
- Trong, L.D., Thao, T.T., and Dinh, N.N., Characterization of the Li-ionic conductivity of La(2/3 –x)Li3xTiO3 ceramics used for all-solid-state batteries, Solid State Ionics, 2015, vol. 278, p. 228.
- Yu, R., Bao, J.-J., et al., Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state lithium ion batteries, Solid State Ionics, 2017, vol. 309, p. 15.
- Schichtel, P. and Geib, M., On the impedance and phase transition of thin film all-solid-state batteries based on the Li4Ti5O12 system, J. Power Sources, 2017, vol. 360, p. 593.
- Suzuki, Sh. and Kawaji, J., Development of complex hydride-based all-solid-state lithium ion battery applying low melting point electrolyte, J. Power Sources, 2017, vol. 359, p. 97.
- Lin, J., Wu, Yu., Bi, R., and Guo, H., All-solid-state microscale lithium-ion battery fabricated by a simple process with graphene as anode, Sensors and Actuators A, 2017, vol. 253, p. 218.