Статья
2019

New Solid Electrolyte Li8– xZr1 –xTaxO6 (x = 0–0.5) for Lithium Power Sources


M. I. Pantyukhina M. I. Pantyukhina , S. V. Plaksin S. V. Plaksin , N. S. Saetova N. S. Saetova , A. A. Raskovalov A. A. Raskovalov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519090118
Abstract / Full Text

In the work, new lithium-conducting solid electrolytes based on lithium zirconate are synthesized. They are obtained by doping Li8ZrO6 phase with isostructural Li7TaO6. It is shown that in the Li8– xZr1– xTaxO6 system, a series of solid solutions х = 0−0.5 based on Li8ZrO6 form. The conductivity of synthesized Li8 ‒ xZr1 – xTaxO6 solid solutions increases by 1–2 orders of magnitude as compared with undoped zirconate Li8ZrO6 due to the formation of lithium vacancies in the tetra- and octahedral layers of the structure. All-solid-phase electrochemical cells with Li7.85Zr0.85Ta0.15O6 electrolyte, 0.75Li2SnMo3O12 ∙ 0.25B2O3 glass-ceramic anode, and 0.2Li2O · 0.2LiF · 0.45V2O5 · 0.25B2O3 cathode are electrochemically tested. It is shown that the resistance of 0.75Li2SnMo3O12 · 0.25B2O3|Li7.85Zr0.85Ta0.15O6|0.2Li2O · 0.2LiF · 0.45V2O5 · 0.25B2O3 cell decreases after the charge—discharge cycling.

Author information
  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620137, Yekaterinburg, Russia

    M. I. Pantyukhina, S. V. Plaksin, N. S. Saetova & A. A. Raskovalov

References
  1. Tian, Y.J., Ding, F., Zhong, H., Liu, C., He, Y.B., Liu, J.Q., and Xu, Q., Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries, Energy Storage Materials, 2018, vol. 14, p. 49.
  2. Takada, K., Progress in solid electrolytes toward realizing solid-state lithium batteries, J. Power Sources, 2018, vol. 394, p. 74.
  3. Li, L., Liu, S., Xue, X., and Zhou, H., Effects of rough interface on impedance of solid LiPON in MIM cells, Ionics, 2018, vol. 24, p. 351.
  4. Saetova, N.S., Raskovalov, A.A., Antonov, B.D., Yaroslavtseva, T.V., Reznitskikh, O.G., and Kadyrova, N.I., The influence of lithium oxide concentration on the transport properties of glasses in the Li2O–B2O3–SiO2 system, J. Non-Crystalline Solids, 2016, vol. 443, p. 75.
  5. Kato, A., Kowada, H., Deguchi, M., Hotehama, C., Hayashi, A., and Tatsumisago, M., XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries, Solid State Ionics, 2018, vol. 322, p. 1.
  6. Choi, S., Lee, S., Park, J., Nichols, W., and Shin, D. Facile synthesis of Li2S–P2S5 glass-ceramics electrolyte with micron range particles for all-solid-state batteries via a low-temperature solution technique (LTST), Appl. Surface Sci., 2018, vol. 444, p. 10.
  7. Yu, K., Gu, R., Wu, L., Sun, H., Ma, R., Jin, L., Xu, Y., Xu, Z., and Wei, X., Ionic and electronic conductivity of solid electrolyte Li0.5La0.5TiO3 doped with LiO2–SiO2–B2O3 glass, J. Alloy. Compd., 2018, vol. 739, p. 892.
  8. Tang, W., Tang, S., Zhang, C., Ma, Q., Xiang, Q., Yang, Y-W., and Luo, J., Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets, Adv. Energy Mater., 2018, vol. 8.https://doi.org/10.1002/aenm.201800866
  9. Tong, Y., Lyu, H., Xu, Y., Thapaliya, B.P., Li, P., Sun, X-G., and Dai, S., All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries, J. Mater. Chem. A, 2018, vol. 6, p. 14847.
  10. Li, C., Yue, H., Wang, Q., Li, J., Zhang, J., Dong, H., Yin, Y., and Yang, S., A novel composite solid polymer electrolyte based on copolymer P (LA-co-TMC) for all-solid-state lithium ionic batteries, Solid State Ionics, 2018, vol. 321, p. 8.
  11. Lavrova, G.V., Ponomareva, G.V., Ponomarenko, I.V., Kirik, S.D., and Uvarov, N.F., Nanocomposite proton conductors containing mesoporous oxides as the promising fuel cell membranes, Russ. J. Electrochem., 2014, vol. 50, p. 603.
  12. Il’ina, E.A., Raskovalov, A.A., Saetova, N.S., Antonov, B.D., and Reznitskikh, O.G., Composite electrolytes Li7La3Zr2O12–glassy Li2O–B2O3–SiO2, Solid State Ionics, 2016, vol. 296, p. 26.
  13. Pershina, S.V., Il’ina, E.A., and Reznitskikh, O.G., Phase composition, density, and ionic conductivity of the Li7La3Zr2O12-based composites with LiPO3 glass addition, Inorg. Chem., 2017, vol. 56, p. 9880.
  14. Il’ina, E.A., Raskovalov, A.A., Antonov, B.D., Pankratov, A.A., Reznitskikh, O.G., Composite electrolytes ceramic Li7La3Zr2O12/glassy Li2O–Y2O3–SiO2, Mater. Res. Bull., 2017, vol. 93, P. 157.
  15. Il’ina, E.A., Pershina, S.V., Antonov, B.D., Pankratov, A.A., and Vovkotrub, E.G., The influence of the glass additive Li2O–B2O3–SiO2 on the phase composition, conductivity, and microstructure of the Li7La3Zr2O12, J. Alloy. Compd., 2018, vol. 765, p. 841.
  16. Keller, M., Varzi, A., and Passerini, S., Hybrid electrolytes for lithium metal batteries, J. Power Sources, 2018, vol. 392, p. 206.
  17. Chen, S., Wen, K., Fan, J., Bando, Y., and Golberg, D., Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes, J. Mater. Chem. A, 2018, vol. 6, p. 11631.
  18. Atovmyan, L.O. and Ukshe, E.A., in Fizicheskaya khimiya. Sovremennye problemy (Physical Chemistry. Modern Problems), Moscow: Khimiya, 1983, p. 92–115.
  19. Batalov, N.N., Zheltonozhko, O.V., Zarembo, S.N., Akhmetzyanov, T.M., Volkova, O.V., Zelyutin, G.V., and Obrosov, V.P., Solid-electrolyte separators based on double nitrides for high-temperature lithium batteries, Russ. J. Electrochem., 1995, vol. 31, p. 285.
  20. Hellstrom, E.E. and van Gool, W., Li-ion conductivity in Li2ZrO3; Li4ZrO4 and LiScO2, Rev. Chim. Miner., 1980, vol. 17, p. 263.
  21. Muhle, C., Dinnebier, R.E., Wullen, L., Schwering, G., and Jansen, M., New insights into the structural and dynamical features of lithium hexaoxometalates Li7MO6 (M = Nb, Ta, Sb, Bi), Inorg. Chem., 2004, vol. 43, p. 874.
  22. Andreev, O.L., Batalov, N.N., and Sofronova, T.V., On thermodynamic stability of electrolytes based on lithium oxide compounds and oxides of Al, Be, Zr, Sc, Y to lithium metal, Elektrokhim.Energetika, 2002, vol. 2, no. 2, p. 61.
  23. Moiseev, G.K. and Vatolin, N.A., Interaction of lithium zirconates with lithium under equilibrium conditions, Doklady Phys. Chem., 2003, vol. 388, p. 33.
  24. Pantyukhina, M.I., Andreev, O.L., Antonov, B.D., and Batalov, N.N., Synthesis and electrical properties of lithium zirconates, Russ. J. Inorg. Chem., 2002, vol. 47, p. 1526.
  25. JCPDS (Joint Committee of Powder Diffraction Standards), 2003.
  26. Chebotin, V.N. and Perfil’ev, M.V., Elektrokhimiya tverdykh elektrolitov (Electrochemistry of solid electrolytes), Moscow: Khimiya, 1978.
  27. Duan, Yu., Structural and electronic properties of Li8ZrO6 and its CO2 capture capabilities: an ab initio thermodynamic approach, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 9752.
  28. Bukun, N.G., Ukshe, A.E., and Ukshe, E.A., Frequency impedance analysis and determination of equivalent circuit elements in systems with solid electrolytes, Russ. J. Electrochem., vol. 29, p. 96.
  29. Pantyukhina, M.I., Shchelkanova, M.S., and Plaksin, S.V., Synthesis and electrochemical properties of Li8 –xZr1 –xNbxO6 solid solutions, Phys. Solid State, 2013, vol. 55, p. 707.
  30. McKnight, M., Whitmore, K.A., Bunton, P.H., Baker, D.B., Vennerberg, D.C., and Feller, S.A., EPR study of RLi2O · V2O5, RNa2O · V2O5, RCaO · V2O5 and RBaO · V2O5 modified vanadate glass system, J. Non-Cryst. Solids, 2010, vol. 356, p. 2268.
  31. Saetova, N.S., Raskovalov, A.A., Antonov, B.D., Yaroslavtseva, T.V., Reznitskikh, O.G., Zabolotskaya, E.V., Kadyrova, N.I., and Telyatnikova, A.A., Conductivity and spectroscopic studies of Li2O–V2O5–B2O3 glasses, Ionics, 2018, vol. 24, p. 1929.
  32. Il’ina, E.A., Saetova, N.S., and Raskovalov, A.A., All-solid-state battery Li–Ga–Ag|Li7La3Zr2O12 + Li2O–Y2O3–SiO2|Li2O–V2O5–B2O3, Russ. J. Appl. Chem., 2016, vol. 89, p. 1434.
  33. Raskovalov, A.A., Il’ina, E.A., Saetova, N.S., and Pershina, S.V., The all-solid-state battery with vanadate glass—ceramic cathode, Ionics, 2018, vol. 24, p. 3299.
  34. Iriyama, Ya. and Kako, T., Charge transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium cobalt oxide thin film interface, Solid State Ionics, 2005, vol. 176, p. 2371.
  35. Kotobuki, M. and Kanamura, K., Fabrication of all-solid-state battery using Li5La3Ta2O12 ceramic electrolyte, Ceram. Int., 2013, vol. 39, p. 6481.
  36. Trong, L.D., Thao, T.T., and Dinh, N.N., Characterization of the Li-ionic conductivity of La(2/3 –x)Li3xTiO3 ceramics used for all-solid-state batteries, Solid State Ionics, 2015, vol. 278, p. 228.
  37. Yu, R., Bao, J.-J., et al., Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state lithium ion batteries, Solid State Ionics, 2017, vol. 309, p. 15.
  38. Schichtel, P. and Geib, M., On the impedance and phase transition of thin film all-solid-state batteries based on the Li4Ti5O12 system, J. Power Sources, 2017, vol. 360, p. 593.
  39. Suzuki, Sh. and Kawaji, J., Development of complex hydride-based all-solid-state lithium ion battery applying low melting point electrolyte, J. Power Sources, 2017, vol. 359, p. 97.
  40. Lin, J., Wu, Yu., Bi, R., and Guo, H., All-solid-state microscale lithium-ion battery fabricated by a simple process with graphene as anode, Sensors and Actuators A, 2017, vol. 253, p. 218.