Examples



mdbootstrap.com



 
Статья
2021

Features of the Thermolysis of Aromatic Compounds


D. A. ZherebtsovD. A. Zherebtsov, S. A. NayfertS. A. Nayfert, M. A. PolozovM. A. Polozov, R. S. MorozovR. S. Morozov
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421120232
Abstract / Full Text

The effect of structure of 25 aromatic compounds on the morphology of carbon formed from them during heating to a temperature of 970°C in an inert atmosphere is studied. The specific surface area is determined for a number of products via nitrogen adsorption (28–48 m2/g). Several aromatic compounds are shown to form carbon without melting stage. X-ray phase analysis nevertheless confirms the formation of just amorphous carbon in all cases, and a negligible amount of graphite in amorphous carbon in only two cases. The thermolysis of a number of compounds is studied via synchronous thermal analysis. It is shown that slow heating during thermolysis can reduce the temperatures of transformation by tens of degrees and even alter the nature of thermolysis.

Author information
  • South Ural State University, 454080, Chelyabinsk, RussiaD. A. Zherebtsov, S. A. Nayfert, M. A. Polozov & R. S. Morozov
References
  1. J. Gibson, M. Holohan, and H. L. Riley, J. Chem. Soc., 456 (1946). https://doi.org/10.1039/JR9460000456
  2. R. Hoffmann, T. Hughbanks, M. Kertesz, and P. H. Bird, J. Am. Chem. Soc. 105, 4831 (1983).
  3. M. J. Bucknum and R. Hoffmann, J. Am. Chem. Soc. 116, 11456 (1994).
  4. M. Belenkov and V. A. Greshnyakov, Phys. Solid State 57, 1253 (2015).
  5. Q. Y. Li, Y. F. Yao, G. Qiu, et al., Chin. Sci. Bull. 61, 2688 (2016). https://doi.org/10.1360/N972016-00462
  6. R. S. Jordan, Y. L. Li, C.-W. Lin, et al., J. Am. Chem. Soc. 139, 15878 (2017).
  7. A. V. Talyzin, S. M. Luzan, K. Leifer, et al., J. Phys. Chem. C 115, 13207 (2011). https://doi.org/10.1021/jp2028627
  8. W. Boenigk, M. W. Haenel, and M. Zander, Fuel 74, 305 (1995). https://doi.org/10.1016/0016-2361(95)92671-R
  9. H. B. Wu and X. W. Lou, Sci. Adv. 3, eaap9252 (2017). https://doi.org/10.1126/sciadv.aap9252
  10. M. A. Polozov, S. A. Naifert, and V. V. Polozova, et al., Vestn. YuUrGU, Ser. Khim. 11 (2), 39 (2019).
  11. C. Sakthi, P. Dharan, M. A. Polozov, V. V. Polozova, et al., Russ. J. Phys. Chem. A 94, 1311 (2020). https://doi.org/10.1134/S0036024420070250
  12. D. A. Zherebtsov, S. A. Naifert, and M. A. Polozov, et al., Vestn. YuUrGU, Ser. Khim. 9 (4), 41 (2017). https://doi.org/10.14529/chem170406
  13. D. A. Zherebtsov, M. U. Schmidt, R. Niewa, et al., Acta Crystallogr., B 75, 384 (2019). https://doi.org/10.1107/S2052520619003287
  14. D. A. Zherebtsov, S. A. Nayfert, M. A. Polozov, et al.,Crystallogr. Rep. 63, 1110 (2018). https://doi.org/10.1134/S1063774518070283
  15. V. E. Privalov and M. A. Stepanenko, Coal Tar Pitch (Metallurgiya, Moscow, 1981) [in Russian].
  16. Chemical Encyclopedia, Ed. by I. L. Knunyants (Sov. Entsiklopediya, Moscow, 1988), Vol. 1 [in Russian].
  17. Chemical Encyclopedia, Ed. by I. L. Knunyants (Sov. Entsiklopediya, Moscow, 1990), Vol. 2 [in Russian].
  18. Chemical Encyclopedia, Ed. by I. L. Knunyants (Bol’sh. Ross. Entsiklopediya, Moscow, 1992), Vol. 3 [in Russian].
  19. Chemical Encyclopedia, Ed. by N. S. Zefirov (Bol’sh. Ross. Entsiklopediya, Moscow, 1995), Vol. 4 [in Russian].
  20. Chemical Encyclopedia, Ed. by N. S. Zefirov (Bol’sh. Ross. Entsiklopediya, Moscow, 1998), Vol. 5 [in Russian].