Examples



mdbootstrap.com



 
Статья
2021

Time History of Performance Parameters of WWR-K Reactor during Gradual Replacement of the Water Reflector by a Beryllium One


D. S. SairanbayevD. S. Sairanbayev, S. N. KoltochnikS. N. Koltochnik, A. A. ShaimerdenovA. A. Shaimerdenov, M. Sh. TulegenovM. Sh. Tulegenov, Y. A. KenzhinY. A. Kenzhin, K. TsuchiyaK. Tsuchiya
Российский физический журнал
https://doi.org/10.1007/s11182-021-02286-6
Abstract / Full Text

The water-cooled WWR-K research reactor has been operating since 2016 using low-enrichment uranium fuel. In order to maintain high levels of generated power and reactivity margin sufficient for a 21-day operation cycle, the water-cooled core reflector of neutrons was gradually, depending on the fuel burnup, replaced by a beryllium one in order to prevent decreasing of the reactor performance. A series of calculation studies are performed with a simulation of the core region of the WWR-K reactor using an MCNP transport code including determination of neutron flux density, reactivity, efficiency of the control rods of the control and protection systems, as well as kinetic parameters critical for ensuring safe reactor operation. The calculated curves of the principal performance characteristics of the WWR-K reactor are presented and analyzed in terms of their use in scientific research and their effect on the reactor operation safety.

Author information
  • Institute of Nuclear Physics (INP) of the Ministry of Energy of the Republic of Kazakhstan, Almaty, Republic of KazakhstanD. S. Sairanbayev, S. N. Koltochnik, A. A. Shaimerdenov, M. Sh. Tulegenov & Y. A. Kenzhin
  • Al-Farabi Kazakh National University, Almaty, Republic of KazakhstanD. S. Sairanbayev, A. A. Shaimerdenov & Y. A. Kenzhin
  • Japan Atomic Energy Agency, Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki-ken, JapanK. Tsuchiya
References
  1. A. A. Shaimerdenov, D. A. Nakipov, F. M. Arinkin, et al., Phys. Atom. Nucl., 81, No. 10, 1408 (2018).
  2. D. A. Merezhko, M. S. Merezhko, M. N. Gussev, et al., Proc. 18th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, The Minerals, Metals & Materials Series (Eds. J. H. Jackson, D. Paraventi, and M. Wright) (2019).
  3. M. S. Merezhko, O. P. Maksimkin, D. A. Merezhko, and A. A. Shaimerdenov, Phys. Met. Metallogr., 120, No. 7, 716 (2019).
  4. A. S. Larionov, E. A. Zhakanbayev, A. N. Karpikov, et al., J. Phys.: Conf. Ser., 1393, Iss. 1, Art. No. 012105 (2019).
  5. L. Chekushina, D. Dyussambaev, A. Shaimerdenov, et al., J. Nucl. Mater., 452, Iss. 1–3 (2014).
  6. I. Tazhibayeva, I. Beckman, V. Shestakov, et al., J. Nucl. Mater., 417, No. 1–3, 748 (2011).
  7. I. Tazhibayeva, M. Skakov, V. Baklanov, et al., Nucl. Fusion., 57, No. 12 (2017).
  8. F. M. Arinkin, A. A. Shaimerdenov, Sh. Kh. Gizatulin, et al., Atomn. Energ., 123, No. 1, 15 (2017).
  9. IAEA Safeguards glossary 2001. Edition International Atomic Energy Agency, Vienna (2002).
  10. https://www.rertr.anl.gov
  11. F. M. Arinkin, Sh. Kh. Gizatulin, Zh. R. Zhotabaev, et al., Reduced enrichment of research and test reactors, in: Proc. RERTR-2004, Vienna (2004).
  12. F. M. Arinkin, Sh. Kh. Gizatulin, ZS. N. Koltochnik, et al., Reduced enrichment of research and test reactors, in: Proc. RERTR-2009, Beijin (2004).
  13. F. M. Arinkin, P. V. Chakrov, L. V. Chekushina, et al., TPU Izvestiya. Ser. Facilities and Technologies in Power Engineering, 325, No. 4, 6 (2014).
  14. A. A. Shaimerdenov, F. M. Arinkin, P. V. Chakrov, et al., Reduced enrichment of research and test reactors, in: Proc. RERTR-2016, Antwerp (2004).
  15. MCNP6 User’s Manual – Los Alamos National Laboratory, LA-CP-13-00634 (2013).
  16. M. B. Chadwick et al., Nucl. Data Sheets, 112, 2887 (2011).
  17. A. A. Zyryanova, Yu. V. Meteleva, A. V. Kozlov, et al., Problems Atomic Sci. Technol. Ser. Nucl. Reactor Constants, Iss. 1, 5 (2018).
  18. A.Naymushin, Y. Chertkov, Varlachev, et al., Adv. Mater. Res., 1084, 289 (2015). https://doi.org/10.4028/www.scientific.net/amr.1084.289.
  19. Yu. V. Stogov, Fundamentals of Neutron Physics: course book [in Russian], MIFI, Moscow (2008).
  20. D. S. Sairanbayev, S. N. Koltochnik, А. А. Shaimerdenov, et al., NNC RK Bulletin, Iss. 1(73), 114 (2018).
  21. G. J. Fischer, 108, 99 (1957).https://doi.org/10.1103/PhysRev.108.99.
  22. Determination of Beryllium in Mountain Rocks and Beryllium Ores by the Photoneutron Method. Nuclear-Physical Methods. Instruction No.72-NP All-Union Institute of Mineral Raw Resources [in Russian], Moscow (1968).
  23. “Equipment Set of Control and Protection System for the VVR-K Reactor ASUZ-18r, RUNK, 501319.075”, SNIIP-Systematom, Moscow (2014).
  24. S. N. Koltochnik and A. A. Shaimerdenov, Eur. J. Phys. Funct. Mater., 3(3), 204 (2019).
  25. A. P. Olson and M. Kalimullah, A Users Guide to the PLTEMP/ANL V4.2Code, Argonne National Laboratory. Argonne, Illinois, USA (2011).
  26. IAEA safety standards No. SSR-3. Safety of research reactors. Specific safety requirements. International Atomic Energy Agency, Vienna (2016).
  27. A. P. Olson, B. Dionne, A. Marin-Lafleche, and M. Kalimullah, A Users Guide to PARET/ANL Version 7.5 r82160803, Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois, USA (2016).