Статья
2021

Electrochemical Supercapacitors (a Review)


Yu. M. Volfkovich Yu. M. Volfkovich
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521040108
Abstract / Full Text

Contemporary scientific literature on electrochemical supercapacitors is reviewed. The electrochemical supercapacitors are fast-rechargeable energy storage devices. They are classified as electrical-double-layer capacitors based on the recharging of the electric double layer; pseudocapacitors, and hybrid capacitors. The electrochemical supercapacitors are used in devices of pulse technology, for electrical energy accumulation, for starting and recuperation of the braking energy in internal combustion engines; for smoothing out peak loads in electrical networks and in numerous portable devices. The electrochemical supercapacitors are subdivided into those of power type and energy type. The power-type (pulsed) supercapacitors have high specific power (~up to 100 kW/kg); the energy-type ones, high specific energy (~up to 25 W h/kg). Compared to batteries, the power-type supercapacitors have a much higher power density and cyclability, up to hundreds of thousands and even million cycles. The electrical-double-layer supercapacitors are also used in the capacitive water deionization devices for water desalination.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    Yu. M. Volfkovich

References
  1. Conway, B., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Berlin: Springer Science and Business Media, 2013.
  2. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors, New York: Wiley, 2015.
  3. Lidorenko, N.S., Anomalous electrical capacitance and experimental models of hyperconductance (in Russian), Dokl. Akad. Nauk SSSR, 1974, vol. 216, p. 1261.
  4. Volfkovich, Yu.M. and Serdyuk, T.M., Electrochemical Capacitors, Russ. J. Electrochem., 2002, vol. 38, p. 935.
  5. Vorotyntsev, M., in: Modern Aspects of Electrochemistry, vol. 17, New York: Plenum, 1986, p. 131.
  6. Pandolfo, A.G. and Hollenkamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol.157, p. 11.
  7. Volfkovich, Y.M., Mazin, V.M., and Urisson, N.A., The influence of the porous structure, microkinetics and diffusion properties on the charge–discharge behaviour of conducting polymers, Russ. J. Electrochem., 1998, vol. 34, p. 740.
  8. Gurevich, I.G., Volfkovich, Yu.M., and Bagotsky, V.S., Liquid porous electrodes (in Russian), Nauka i Tekhnika, Minsk, 1974.
  9. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, London: Springer, 2014.
  10. Volfkovich, Yu.M., Sakars, A.V., and Volinsky, A.A., Application of the standard porosimetry method for nanomaterials, Int. J. Nanotechnology, 2005, vol. 2, p. 292.
  11. Dzyazko, Yu.S., Ponomaryova, L. N., Volfkovich, Yu.M., Trachevskii V.V., and Palchik A. V., Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties, Microporous Mesoporous Materials, 2014, vol. 198, p. 55.
  12. Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., and Unger, K., Pure Appl. Chem., 2012, vol. 84, p. 107.
  13. Inagaki, M., Konno, H., and Tanaike, O., Carbon materials for electrochemical capacitors, J. Power Sources, 2010, vol. 195, p. 7880.
  14. Miller, J.R., Engineering electrochemical capacitor applications, J. Power Sources, 2016, vol. 326, p. 726.
  15. Park, S.J. and Kim, B.J., Carbon materials for electrochemical capacitors, Carbon Science, 2005, vol. 6, p. 257.
  16. Largeot, C., Portet, C., Chmiola, J., Taberna, P.L., Gogotsi, Y., and Simon, P., Relation etween the Ion Size and Pore Size for an Electric Double-Layer. Capacitor, J. Am. Chem. Soc., 2008, vol. 130, p. 2730.
  17. Gryglewicz, G., Machnikowski, J., Lorenc-Grabowska, E., Lota, G., and Frackowiak, E., Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochim. Acta, 2005, vol. 50, p. 1197.
  18. Wang, L., Fujita, M., and Inagaki, M., Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochim. Acta, 2005, vol. 50, p. 1197.
  19. Tarasevich, M.R., Electrochemistry of Carbonaceous Materials (in Russian), Moscow: Nauka, 1984.
  20. Tarkovskaya, I.A., Oxidized Carbon (in Russian), Kiev, Naukova Dumka, 1981.
  21. Ermakova, A.S., Popova, A.V., Chayka, M.Yu., and Kravchenko, T.A., Redox Functionalization of Carbon Electrodes of Electrochemical Capacitors, Russ. J.Electrochem., 2017, vol. 53, p. 608.
  22. Solyanikova, A.S., Chayka, M.Yu., Parfenov, V.A., Kirik, S.D., and Kravchenko, T.A., Activation of Mesostructured Electrode Materials for Electrochemical Capacitors, Russ. J. Electrochem., 2015, vol. 51, p. 764.
  23. Volfkovich, Yu.M., Goroncharovskaya, I.V., Evseev, A.K., Sosenkin, V.E., and Gol’din M.M., The Effect of Electrochemical Modification of Activated Carbons by Polypyrrole on Their Structure Characteristics, Composition of Surface Compounds, and Adsorption Properties, Russ. J. Electrochem., 2017, vol. 53, p. 1363.
  24. Volfkovich, Yu.M., Rychagov, A.Yu., Mikhalin, A.A., Kardash, M.M., Kononenko, N.A., Ainetdinov, D.V., Shkirskaya, S.A., and Sosenkin, V.E., Capacitive deionization of water using mosaic membrane, Desalination, 2018, vol. 426, p. 1.
  25. Oda, H.H., Yamashita, A.S., Minoura, M. Okamoto, and Morimoto, T., Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor, J. Power Sources, 2006, vol. 158, p. 1510.
  26. Kodama, M., Yamashita, J., Soneda,Y., Hatori, H., and Kamegawa, H., Preparation and electrochemical characteristics of N-enriched carbon foam, Carbon., 2007, vol. 45, p. 1105.
  27. Hulicova, D., Kodama, M., and Hatori, H., Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors, Chem. Mater., 2006, vol. 18, p. 2318.
  28. Guo, B., Ma, R., Li, Z., Guo, S., Luo, J., Yang, M., Liu, Q., Thomas, T., and Wang, J., Hierarchical N-Doped Porous Carbons for Zn–Air Batteries and Supercapacitors, Nano-Micro Letters, 2020, vol. 12, p. 2.
  29. Ghosh, S., Jeong, S.M., and Polaki, S.R., A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide, Korean J. Chem. Eng., 2018, vol. 35, p. 1389.
  30. Kodama, M., Yamashita, J., Soneda, Y., Hatori, H., Kamegawa, K., and Moriguchi, I., Structure and electrochemical capacitance of nitrogen-enriched mesoporous carbon, Chem. Lett., 2006, vol. 35, p. 680.
  31. Li, W., Chen, D., Li, Z., Shi, Y., Wang, Y., Huang, J., Zhao, D., and Jiang, Z., Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor, Electrochim. Commun., 2007, vol. 9, p. 569.
  32. Konno, H., Onishi, H., Yoshizawa, N., and Azumi, K., MgO-templated nitrogen-containing carbons derived from different organic compounds for capacitor electrodes, J. Power Sources, 2010, vol. 195, p. 667.
  33. Frackowiak, E., Lota, G., Machnikowski, J., Vix-Gutrl, C., and Beguin, F., Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content, Electrochim. Acta, 2006, vol. 51, p. 2209.
  34. Guo, H. and Gao, Q., Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor, J. Power Sources, 2009, vol. 186, p. 551.
  35. Konno, H., Ito, T., Ushiro, M., Fushimi, K., and Azumi, K., High capacitance B/C/N composites for capacitor electrodes synthesized by a simple method, J. Power Sources, 2010, vol. 195, p. 1739.
  36. Sepehri, S., Garcia, B.B., Zhang, Q., and Cao, G., Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen, Carbon, 2009, vol. 47, p. 1436.
  37. Volfkovich, Yu.M., Bograchev, D.A., Rychagov, A.Yu, Sosenkin, V.E., and Chaika, M.Yu., Supercapacitors with carbon electrodes. Energy efficiency: modeling and experimental verification, J. Solid State Electrochem., 2015, vol. 19, p. 1.
  38. Bograchev, D.A., Gryzlov, D.Yu., Sosenkin, V.E., and Volfkovich, Yu.M., Modeling and experimental verification of operation of supercapacitors with carbon electrodes in non-aqueous electrolytes. The energy efficiency, Electrochim. Acta, 2019, vol. 319, p. 552.
  39. Cericola, D., Kötz, R., and Wokaun, A., Effect of electrode mass ratio on aging of activated carbon based supercapacitors.utilizing organic electrolytes, J. Power Sources, 2011, vol. 196, p. 3114.
  40. Portet, C., Taberna, P.L., Simon, P., and Flahaut, E., Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte, J. Power Sources, 2005, vol. 139, p. 371.
  41. Balducci, A., Dugasa, R., Taberna, P.L., Simona, P., Plee, D., Mastragostino, M., and Passerini, S., High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte, J. Power Sources, 2007, vol. 165, p. 922.
  42. Yadav, N., Yadav, Ne., and Hashmi, S.A., Ionic liquid incorporated, redox-active blend polymer electrolyte for high energy density quasi-solid-state carbon supercapacitor, J. Power Sources, 2020, vol. 451, p. 1.
  43. Vancov, T., Alston, A.S., Brown, T., and McIntosh, S., Use of ionic liquids in converting lignocellulosic material to biofuels, Renewable Energy, 2012, vol. 45, p. 1.
  44. Lu, Y., Zhang, S., Yin, J., Bai, C., Zhang, J., Li, Y., Yang, Z., Ge, M., Zhang, L., Wei, M., Ma, M., Ma, Y., and Chen, Y., Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors, Carbon, 2017, vol. 124, p. 64.
  45. Eftekhari, A., Supercapacitors utilizing ionic liquids, Energy Storage Mater., 2017, vol. 9, p. 47.
  46. Lane, G.H., Electrochemical reduction mechanisms and stabilities of some cation types used in ionic liquids and other organic salts, Electrochim. Acta, 2012, vol. 83, p. 513.
  47. Bodin, C., Mourad, E., Zigah, D., Le, S., Vot, S.A., Freunberger, F., Favier, and Fontaine, O., Biredox ionic liquids: new opportunities toward high performances supercapacitors, Faraday Discussions, 2017, vol. 22, p. 1.
  48. Denshchikov, K.K., Izmaylova, M.Y. Zhuk, A.Z., Vygodskii, Y.S., Novikov, V.T., and Gerasimov, A.F., 1‑Methyl-3-butylimidazolium tetraflouroborate with activated carbon for electrochemical double layer supercapacitors, Electrochim. Acta, 2010, vol. 55, p. 7506.
  49. Kondrat, S., Wu, P., Qiao, R., and Kornyshev, A.A., Accelerating charging dynamics in subnanometre pores, Nature Materials, 2014, vol. 13, p. 387.
  50. Budkov, Y.A., Kolesnikov, A.L., Goodwin, Z.A., Kiselev, M.G., and Kornyshev, A.A., Theory of electrosorption of water from ionic liquids, Electrochim. Acta, 2018, vol. 284, p. 346.
  51. Lazzari, M., Mastragostino, M., and Soavi, F., Capacitance response of carbons in solvent-free ionic liquid electrolytes, Electrochem. Commun., 2007, vol. 9, p. 1567.
  52. Lin, Z., Barbara, D., Taberna, P.L, Katherine, Van Aken, L., Anasori, B., Gogotsi, Y., and Simon, P., Capacitance of Ti3C2TxM. Xene in ionic liquid electrolyte, J. Power Sources, 2016, vol. 326, p. 575.
  53. Yochelis, A., Transition from non-monotonic to monotonic electrical diffuse layers: impact of confinement on ionic liquids, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 2836.
  54. Arbizzani, C., Biso, M, Cericola, D., and Lazzari, M, Francesca Soavi, and Mastragostino, M., Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes, J. Power Sources, 2008, vol. 185, p. 1575.
  55. Lane, G.H., Electrochemical reduction mechanisms and stabilities of some cation types used in ionic liquids and other organic salts, Electrochim. Acta, 2012, vol. 83, p. 513.
  56. Kalpana, D., Renganathan, N.G., and Pitchumani, S., A new class of alkaline polymer gel electrolyte for carbon aerogel supercapacitors, J. Power Sources, 2006, vol. 157, p. 621.
  57. Yin,Y., Zhou, J., Mansour, A.N., and Zhou, X., Effect of NaI/I2 mediators on properties of PEO/LiAlO2 based all-solid-state Supercapacitors, J. Power Sources, 2011, vol. 196, p. 5997.
  58. Gao, H. and Lian, K., High rate all-solid electrochemical capacitors using proton conducting polymer electrolytes, J. Power Sources, 2011, vol. 196, p. 8855.
  59. Yu, H., Wu, J., Fan, L., Lin, Y., Xu, K., Tang, Z., Cheng, C., Tang, S., Lin, J., Huang, M., and Lan, Z., A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor, J. Power Sources, 2012, vol. 198, p. 402.
  60. Kim, D.W., Ko, J.W., Kim, W.J., and Kim, J.H., Study on the electrochemical characteristics of quasi-solid-state electric double layer capacitors assembled with sulfonated poly(ether ketone), J. Power Sources, 2006, vol. 163, p. 300.
  61. Staiti, P. and Lufrano, F., Investigation of polymer electrolyte hybrid supercapacitor based on manganese oxide–carbon electrodes, Electrochim. Acta, 2010, vol. 55, p. 7436.
  62. Zihong, S. and Anbao, Y., Electrochemical Performance of Nickel Hydroxide/Activated Carbon Supercapacitors Using a Modified Polyvinyl Alcohol Based Alkaline Polymer Electrolyte, Chinese J. Chem. Engineering, 2009, vol. 17, p. 150.
  63. Rychagov, A.Yu., Izmailova, M.Yu., Sosenkin, V.E., Vol’fkovich, Yu.M., and Den’shchikov, K.K., Electrochemical behavior of disperse carbon in electrolytes based on the ionic liquid 1-methyl-3-butylimidazolium tetrafluoroborate (in Russian), Electrochim. Energetika, 2015, vol. 15, p. 3.
  64. Lu, Y., Zhang, S., Yin, J., Bai, C., Zhang, J., Li, Y., Yang, Y., Ge, Z., Zhang, M., Wei, L., Ma, M., Ma, Y., and Chen, Y., Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors, Carbon, 2017, vol. 124, p. 64.
  65. Efimov, M.N., Sosenkin, V.E., Volfkovich, Yu.M., Vasilev, A.A., Muratov, D.G., Baskakov, S.A., Efimov, O.N., and Karpacheva, G.P., Electrochemical performance of polyacrylonitrile-derived activated carbon prepared via IR pyrolysis, Electrochem. Commun., 2018, vol. 96, p. 98.
  66. Borenstein, A., Hanna, O., Attias, R., and Luski, S., Thierry Brousse and Doron Aurbach. Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A, 2017, vol. 5, p. 12653.
  67. Wang, H., Zhong, Y., Li, Q., Yang, J., and Dai, Q., Cationic starch as a precursor to prepare porous activated carbon for application in supercapacitor electrodes, J. Phys. and Chem. Solids, 2008, vol. 69, p. 2420.
  68. Volfkovich, Yu.M., Mikhailin, A.A., Bograchev, D.A. Sosenkin, V.E., and Bagotsky, V.S., Studies of supercapacitor carbon electrodes with high pseudocapacitance, Recent Trend in Electrochem. Sci. and Technology, 2012, p. 159.
  69. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., and Bagotsky, V.S., Supercapacitor carbon electrodes with high capacitance, J. Solid State Electrochem., 2014, vol. 18, p. 1351.
  70. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Electrochemistry (in Russian), Moscow: Khimiya, 2001.
  71. Nishihara, H., Itoi, H., Kogure, T., Hou, P., Touhara, H., Okino, F., and Kyotani, T., Chem., Investigation of the ion storage/transfer behavior in an electrical double layer capacitor by using ordered microporous carbons as model materials, Chem. Eur. J., 2009, vol. 15, p. 5355.
  72. Rychagov, A.Yu., Vol’fkovich, Yu.M., Vorotyntsev, M.A., Kvacheva, L.D., Konev, D.V., Krestinin, A.V., Krya-zhev, Yu.G., Kuznetsov, V.L, Kukushkina, Yu.A., Mukhin, V.M., Sokolov, V.V., and Chervonobrodov, S.P., Perspective electrode materials for supercapacitors (in Russian), Elektrokhim. Energetika, 2012, vol. 12., p. 167.
  73. Ariyanto, T., Glaesel, J., Kern, A., Zhang, G., and Etzold, B.J., Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures, Beilstein J. Nanotechnol., 2019, vol. 10, p. 419.
  74. Krüner, B., Odenwald, C., Tolosa, A., Schreiber, A., Aslan, M., Kickelbick, G., and Presser, V., Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes, Sustainable Energy Fuels, 2017, vol. 1, p. 1588.
  75. Dhaka, T.P., Chapter 8 – Simple Parallel-Plate Capacitors to High–Energy Density Future Supercapacitors: A Materials Review (Carbide-Derived Carbon – an overview), Emerging Mater. Energy Conversion Storage, 2018, p. 247.
  76. Yang, X., Fei, B., Ma, J., Liu, Liu, X., Yang, S., Tian, G., Jiang, Z., Yang, S., Tian, G., and Jiang, Z., Porous nanoplatelets wrapped carbon aerogel by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes, Carbohydrate Polymers, 2018, vol. 180, p. 385.
  77. Vol’fkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., and Krestinin, A.V. High-power electrochemical supercapacitor on the basis of carbon nanotubes (in Russian), Elektrokhim. Energetika, 2008, vol. 8, p. 106.
  78. Yang, Z., Tian, J., Yin, Z., Cui, C., Qian, W., and Wei, F., Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review, Carbon, 2019, vol. 141, p. 467.
  79. Volfkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., Efimov, O.N., Os’makov, M.I., and Seliverstov, A.F., Measuring the Specific Surface Area of Carbon Nanomaterials by Different Methods, Russ. J. Electrochem, 2014, vol. 50, p. 1099.
  80. Dong, B., He, B.L., Xu, C.L., and Li, H.L., Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor, Mater. Sci. and Engineering B., 2007, vol. 143, p. 7.
  81. Wang, J., Xu, Y., Chen, X., and Sun, X., Capacitance properties of single wall carbon nanotube/polypyrrole composite films, Composites Sci. Technol.y, 2007, vol. 67, p. 2981.
  82. Dong, B., He, B.L., Xu, C.L., and Li, H.L., Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor, Mater. Sci. Eng. B, 2007, vol. 143, p. 7.
  83. Honda, Y., Takeshige, M., Shiozaki, H., Kitamura, T., Yoshikawa, K., Chakarabarti, S., Suekane, O., Pan, L., Nakayama, Y., Yamagata, M., and Ishikawa, M., Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor, J. Power Sources, 2008, vol. 185, p. 1580.
  84. Chee, W.K., Lim, W.K., Zainal, H.N., Huang, Z., Harrison, N.M., and Andou, Y., Flexible Graphene-Based Supercapacitors: A Review, J. Phys. Chem. C., 2016, vol. 120, p. 4153.
  85. Eftekhari, A., Shulga, Y.M., Baskakov, S.A., and Gutsev, G.L., Graphene oxide membranes for electrochemical energy storage and conversion. Intern, J. Hydrogen Energy, 2018, vol. 43, p. 2307.
  86. Shulga, Yu.M., Baskakova, S.A., Baskakova, Yu.V., Lobach, A.S., Kabachkov, E.N., Volfkovich, Yu.M., Sosenkin, V.E., Shulga, N.Yu., Nefedkin, S.I., Kumar, Y., and Michtchenko, A., Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitors, J. Alloys Compounds, 2018, vol. 730, p. 88.
  87. Shulga, Yu.M., Baskakov, S.A., Baskakova, Y.V., Lobach, A.S., Volfkovich, Yu.M., Sosenkin, N.Y., Shulga, N.Yu., Parkhomenko, Y.N., Michtchenko, A., and Kumar, Y., Hybrid porous carbon materials derived from composite of humic acid, Microporous Mesoporous Mater., 2017, vol. 245, p. 24.
  88. Kryazhev, Yu.G., Volfkovich, Yu.M., Mel’nikov, V.P., Rychagov, A.Yu., Trenikhin, M.V., Solodov-nichenko, V.S., and Likholobov, V.A., Synthesis and study of electrochemical properties of nanocomposites with graphene-like particles integrated into a high-porosity carbon matrix, Prot. Metals Physical Chemistry Surfaces, 2017, vol. 53, p. 422.
  89. Shulga, Yu.M., Baskakov, S.A., Baskakova, Yu.V., Volfkovich, Yu.M., Shulga, N.Yu., Skryleva, E.A., Parkhomenko, Y.N., Belay, K.G., Gutsev, G.L., Rychagov, A.Y., Sosenkin, V.E., and Kovalev, I.D., Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes, J. Power Sources, 2015, vol. 279, p. 722.
  90. Ke, Q. and Wang, J., Graphene-based materials for supercapacitor electrodes. A review, J. Materiomics, 2016, vol. 2, p. 37.
  91. Lee, H. and Lee, K.S., Interlayer distance controlled graphene, supercapacitor and method of producing the same, US Patent 10,214, 422 B2, 2019.
  92. Yang, X., Cheng, C., Wang, Y., Qiu, L., and Li, D., Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage, Science, 2013, vol. 341, p. 534.
  93. Liu, H., Wang, Y., Gou, X., Qi, T., Yang, J., and Ding, Y., Three-dimensional graphene/polyaniline composite material forhigh-performance supercapacitor applications, Mater. Sci. Eng. B, 2013, vol. 178, p. 293.
  94. Aboutalebi, H., Chidembo, A.T., Salari, M., Konstantinov, K., Wexler, D., Liu, H.K., and Dou, S.X., Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors, Energy Environ. Sci., 2011, vol. 4, p. 1855.
  95. Zhong, M., Song, Y., Li, Y., Ma, C., Zhai, X., Shi, J., Guo, Q., and Liu, L., Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application, J. Power Sources, 2012, vol. 217, p. 6.
  96. Sun, D., Yan, X., Lang, J., and Xue, Q., High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper, J. Power Sources, 2013, vol. 222, p. 52.
  97. Zhou, Z. and Wu, X.F., Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization, J. Power Sources, 2013, vol. 222, p. 410.
  98. Mohammadi, A., Arsalani, N., Tabrizi, A.G., Moosavifard, S.E., Naqshbandi, Z., and Ghadimi, L.S., Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors, Chem. Eng.g J., 2018, vol. 334, p. 66.
  99. Smirnov, V.A., Denisov, N.N., Dremova, N.N., Volfkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., Belay, K.G., Gutsev, G.L., Shulga, N.Yu., and Shulga, Yu.M., A comparative analysis of graphene oxide films as proton conductors, Appl. Phys. A, 2014, vol. 117, p. 1859.
  100. Volfkovich, Yu.M., Lobach, A.S., Spitsyna, N.G., Baskakov, S.A., Sosenkin, V.E., Rychagov, A.Yu., Kabachkov, E.N., Sakars, A., Michtchenko, A., and Shulga, Yu.M., Hydrophilic and Hydrophobic Pores in Reduced Graphene Oxide Aerogel, J. Porous Mater., 2019, vol. 26, p. 1111.
  101. Saha, S., Samanta, P., Murmua, N.C., and Kuila, T., A review on the heterostructure nanomaterials for supercapacitor application, J. Energy Storage, 2018, vol. 17, p. 181.
  102. González, A. and Goikole, E., Review on supercapacitors: Technologies and materials, Renewable and Sustainable Energy Reviews, 2016, vol. 58, p. 1189206.
  103. Venkataraman, A., Pseudocapacitors for Energy Storage, 2015, https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2 Fopen_access_etds%2F2486&utm_medium=PDF&utm_campaign=PDFCoverPages.
  104. Bodin, C., Mourad, E., Zigah, D., le Vot, S., Freunberger, S.A., Favier, F., and Fontaine, O., Biredox ionic liquids: new opportunities toward high performances supercapacitors, Faraday Discuss., 2017, vol. 206, p. 2.
  105. Zhi, M, Xiang, C., Li, J., Li, M., and Wu, N., Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review, Nanoscale, 2013, vol. 5, p. 72.
  106. Ghosh, S., Jeong, S.M., and Polaki, S.R., A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide, Korean J. Chem. Eng., 2018, vol. 35, p. 1389.
  107. Arun, N., Jain, A., Aravindan, V., Jayaraman, S., Ling, V.C., Srinivasan, M.P., and Madhavi, S., Nanostructured spinel LiNi0.5Mn1.5O4 as new insertion anode for advanced Li-ion capacitors with high power capability, Nano Energy, 2015, vol. 12, p. 69.
  108. Kate, R.S., Khalate, S.A., and Deokate, R.J., Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review, J. Alloys Compounds, 2018, vol. 734, p. 89.
  109. Sk, M.M., Yue, C.Y., Ghosh, K., and Jena, R.K., Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors, J. Power Sources, 2016, vol. 308, p. 121.
  110. Nithya, V.D. and Arul, N.S., Review on a-Fe2O3 based negative electrode for high performance supercapacitors, J. Power Sources, 2016, vol. 327, p. 97.
  111. Yue-feng, S., Feng, W., Li-ying, B., and Zhao-hui, Y., RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor, New Carbon Materials, 2007, vol. 22, p. 53.
  112. Li, Z., Wang, J., X, S.L., and Yang, L.S., Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors, J. Power Sources, 2011, vol. 196, p. 8160.
  113. Zhanga, W.J. and Huang. K.G., A review of recent progress in molybdenum disufide-based supercapacitors and batteries, Inorg. Chem. Front, 2017, vol. 4, p. 1602.
  114. Snook, G.A., Kao, P., and Best, A.S., Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources, 2011, vol. 196, p. 1.
  115. Peng, C., Zhang, S., Jewell, D., and Chen, G.Z., Carbon nanotube and conducting polymer composites for supercapacitors, Progress Natural Sci., 2008, vol. 8, p. 777.
  116. Huang, Z., Li, L., Wang, Y., Zhang, C., and Liu, T., Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review, Composites Commun., 2018, vol. 8, p. 83.
  117. Wang, J., Xu, Y., Chen, X., and Sun, X., Capacitance properties of single wall carbon nanotube/polypyrrole composite films, Composites Sci. Technol., 2007, vol. 67, p. 2981.
  118. Kim, B.C., Kwon, J.S., Ko, J.M., Park, J.H., Too, C.O., and Wallace, G.G., Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber, Synthetic Metals, 2010, vol. 160, p. 94.
  119. Cong, H.P., Ren, X.C., Wang, P., and Yu, S.H., Flexible graphene–polyaniline composite paper for high-performance supercapacitor, Energy Environ. Sci., 2013, vol. 6, p. 1185.
  120. Qin, W., Jian-ling, L., Fei, G., Wen-sheng, L., Ke-zhong, W., and Xin-dong, W., Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor, New Carbon Mater., 2008, vol. 1, p. 275.
  121. Cai, J.J., Kong, L.B., Zhang, J., Luo, Y.C., and Kang, L., A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor, Chinese Chem. Lett., 2010, vol. 21, p. 1509.
  122. Yang, M., Cheng, B., Song, H., and Chen, X., Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor, Electrochim. Acta, 2010, vol. 55, p. 7021.
  123. Fang, Y., Liu, J., Yu, D.J., Wicksted, J.P., Kalkan, K., Topal, C.Q., Flanders, B.N., Wu, J., and Li, J., Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition, J. Power Sources, 2010, vol. 195, p. 674.
  124. Vorotyntsev, M.A., Konev, D.V., Devillers, Ch.H., Bezverkhyy, I., and Heintz, O., Electroactive polymeric material with condensed structure on the basis of magnesium(II) polyporphine, Electrochim. Acta, 2011, vol. 56, p. 3436.
  125. Volfkovich, Yu.M., Zolotova, T.K., Bobe, S.L., Shlepakov, A.V., and Bagotsky, V.S., Influence of porous structure, interfacial capacitance, kinetic and diffusion characteristics on discharge and charging curves of polyaniline electrodes, Russ. J. Electrochem., 1993, vol. 29, p. 1094.
  126. Volfkovich, Yu.M., Sergeev, A.G., Zolotova, T.K., Afanasiev, S.D., Efimov, O.N., and Krinichnaya, E.P., Macrokinetics of polyaniline based electrode: effects of porous structure, microkinetics, diffusion, and electrical double layer, Electrochim. Acta, 1999, vol. 44, p. 1543.
  127. Algharaibeh, Z. and Pickup, P.G., An asymmetric supercapacitor with anthraquinone and dihydroxybenzene modified carbon fabric electrodes, Electrochem. Commun., 2011, vol. 13, p. 147.
  128. Jang, B.Z., Liu, C., Neff, D., Yu, Z., Wang, M.C., Xiong, W., and Zhamu, R., Graphene Surface-Enabled Lithium Ion-Exchanging Cells: Next-Generation High-Power Energy Storage Devices, Nano Lett., 2011, vol. 11, p. 3785.
  129. Jeżowski, P., Crosnier, O., Deunf, E., Poizot, P., Béguin, F, and Brousse, Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt, Nature Mater., 2018, vol. 17, p. 167.
  130. Li, G., Yang, Z., Yin, Z., Guo, H., Wang, Z., and Yan, G., Non-aqueous dual-carbon lithium-ion capacitors: a review, J. Mater. Chem. A, 2019, vol. 7. p. 15541.
  131. Beliakov, A.I. and Brintsev, A.M., Hybrid supercapacitor NiOOH/KOH/C/. Proc. 9th Int. Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, Florida, 1999, vol. 9.
  132. Volfkovich, Yu.M. and Shmatko, P.A., Electric Double Layer Capacitor, US Patent 6.628.504 (2003).
  133. Volfkovich, Yu.M., Rychagov, A.Yu., Urisson, N.A., and Serdyuk, T.M., Positive Electrode of Electric double layer capacitor, US Patent 7.006.346 B2 (2006).
  134. Banerjee, A., Ravikumar, M.K., Jalajakshi, A., Kumar, P.S., Gaffoor, S.A., and Shukla, A.K., Substrate integrated Lead–Carbon hybrid ultracapacitor with flooded, absorbent glass mat and silica-gel electrolyte configurations, J. Chem. Sci., 2012, vol. 124, p. 747.
  135. Li, Z., Wang, S., Liu, X., and Yang, L.S., Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors, J. Power Sources, 2011, vol. 196, p. 8160.
  136. Burke, A. and Miller, M., The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications, J. Power Sources, 2011, vol. 196, p. 514.
  137. Kosova, N.V., Kulova, T.L., Nikolskaya, N.F., Podgornova, O.A., Rychagov, A.Yu., Sosenkin, V.E., and Volfkovich, Yu.M., Effect  of porous structure of LiCoPO4 on its performance in hybrid supercapacitor, J. Solid State Electrochem., 2019, vol. 23, p. 1981.
  138. Amatucci, G.G., Badway, F., Du Pasquier, A., and Zheng, T., An asymmetric hybrid nonaqueous energy storage cell, J. Electrochem. Soc., 2001, vol. 148, p. A930.
  139. Santhanam, R. and Rambabu, B., Research progress in high voltage spinel LiNi0.5Mn1.5O4 Material, J. Power Sources, 2010, vol. 195, p. 5442.
  140. Singh, M.K. and Hashmi, S.A., Performance of solid-state hybrid supercapacitor with LiFePO4/AC composite cathode and Li4Ti5O12 as anode, Ionics, 2017, vol. 23, p. 1.
  141. Potapenko, A.V. and Kirillov, SA., Lithium manganese spinel materials for high-rate electrochemical applications (Review), J. Energy Chem., 2014, vol. 23, p. 543.
  142. Li, H., Cheng, L., and Xia, Y.A., Hybrid electrochemical supercapacitor based on a 5 V Li-Ion battery cathode and active carbon, Electrochem. Solid-State Lett., 2005, vol. 8, p. A433.
  143. Karthikeyan, K., Aravindan, V., Lee, S.B., Jang, I.C., Lim, H.H., Park, G.J., Yoshio, M., and Lee, Y.S., Electrochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors, J. Power Sources, 2010, vol. 195, p. 3761.
  144. Genc, R., Alas, M.O., Harputlu, E., Repp, S., Kremer, N., Castellano, M., Colak, S.G., Ocakoglu, K., and Erdem, E., High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots, 2017, Scientific reports 7. Article number: 11222, p. 1.
  145. Vasanthi, R., Kalpana, D., and Renganathan, N.G., Olivine-type nanoparticle for hybrid supercapacitors, J. Solid State Electrochem., 2008, vol. 12, p. 961.
  146. Cai, J.J., Kong, L.B., Zhang, J., Luo, Y.C., and Kang, L., A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor, Chinese Chem. Lett., 2010, vol. 21, p. 1509.
  147. Gao, X., Zu1, L., Cai, X., Li, C., Lian, H., Liu, Y., Wang, X., and Cui, X., High Performance of Supercapacitor from PEDOT:PSS Electrode and Redox IodideIon Electrolyte, Nanomaterials, 2018, vol. 8, p. 335.
  148. Sonia, T.S., Mini, P.A., Nandhini, R., Sujith, K., Avinash, B., Nair, S.V., and Subramanian, K.R., Composite supercapacitor electrodes made of activated carbon/PEDOT:PSS and activated carbon/doped PEDOT, Bull. Mater. Sci., 2013, vol. 36, p. 547.
  149. Lin, Z., Goikolea, E., Balducci, A., Naoi, K., Taberna, P.L., Salanne, M., Yushin, G., and Simon, P., Materials for supercapacitors: When Li-ion battery power is not enough, Mater. Today, 2018, vol. 21, p. 419.
  150. Miller, J.R., Perspective on electrochemical capacitor energy storage, Applied Surf. Sci., 2018, vol. 460, p. 3.
  151. Yassine, M. and Fabris, D., Performance of Commercially Available Supercapacitors, Energies, 2017, vol. 10, p. 1340.
  152. Zhang, L., Hu, X., Wang, Z., Sun, F., and Dorrell, D.G., A review of supercapacitor modeling, estimation, and applications: A control/management perspective, Renewable Sustainable Energy Reviews, 2018, vol. 81, p. 1868.
  153. Chee, W.K., Lim, Zainal, Z., Huang, N.M., Harrison, I., and Andou, Y., Flexible Graphene-Based Supercapacitors: A Review, J. Phys. Chem. C., 2016, vol. 120, p. 4153.
  154. Miller, J.R., Engineering electrochemical capacitor applications, J. Power Sources, 2016, vol. 326, p. 726.
  155. Lewandowski, A. and Galinski, M., Practical and theoretical limits for electrochemical double-layer capacitors, J. Power Sources, 2007, vol. 173, p. 822.
  156. Mastragostino, M. and Soavi, F., Strategies for high-performance supercapacitors for HEV, J. Power Sources, 2007, vol. 174, p. 89.
  157. Paleo, A.J., Stait, P., Brigandì, A., Ferreira, F.N., Rocha, A.M., and Lufrano, F., Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes, Energy Storage Mater., 2018, vol. 12, p. 204.
  158. Hosseini, M.G., Rasouli, H., Shahryari, E., and Naji, L., Electrochemical behavior of a Nafion membrane-based solid-state supercapacitor with a graphene oxide–multiwalled carbon nanotube–polypyrrole nanocomposite, J. Appl. Polym. Sci., 2017, vol. 13, p. 44926.
  159. Łatoszy’nska, A.A., Taberna, P., Simon, P., and Wieczorek, W., Proton conducting Gel Polymer Electrolytes for supercapacitor applications, Electrochim. Acta, 2017, vol. 242, p. 31.
  160. Li, J., Qiao J., and Lian, K., Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: A review., Energy Storage Mater., 2020, vol. 24, p. 6.
  161. Oren, Y., Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review), Desalination, 2008, vol. 228, p. 10.
  162. Strathmann, H., Ion-Exchange Membrane Processes in Water Treatment Sustainability Science and Engineering, Elsevier, 2010.
  163. Volfkovich, Yu.M., Capacitive Deionization of Water (A Review), Russ. J. Electrochem., 2020, vol. 56, p. 18.
  164. Suss, M.E., Baumann, T.F., Bourcier, W.L., Spadaccini, C.M., Rose, K.A., Santiago, J.G., and Stadermann, M., Capacitive desalination with flow-through electrodes, Energy Environ. Sci., 2012, vol. 5, p. 9511.
  165. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin, V.E., and Park, D., Capacitive deionization of aqueous solutions. modeling and experiments, Desalination Water Treatment, 2017, vol. 69, p. 130.
  166. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin, V.E., Milyutin, V.V., and Park, D., Electrodes Based on Carbon Nanomaterials: Structure, Properties and Application to Capacitive Deionization in Static Cells, in: Chapter 9. Nano-Optics, Nanophotonics, Nanomaterials, and Their Applications, Eds. Fesenko, O. and Fesenko, L., Springer, 2018, p. 127.
  167. Rica, R.A., Ziano, R., Salerno, D., Mantegazza, F., and Brogioli, D., Thermodynamic Relation between Voltage–Concentration Dependence and Salt Adsorption in Electrochemical Cells, Phys. Rev. Lett, 2012, vol. 109, p. 156103.
  168. Evlashin, S.A., Maksimov, Y.M., Dyakonov, P.V., Pilevsky, A.A., Maslakov, K.I., Mankelevich, Y.A., Voronina, E.N., Vavilov, S.V., Pavlov, A.A., Zenova, E.V., Akhatov, I.S., and Suetin, N.V., N-Doped Carbon NanoWalls for Power Sources, Sci. Reports., 2019, vol. 9, p. 6716.
  169. Porada, S., Zhao, R., Van Der Wal, A., Presser, V., and Biesheuvel, P.M., Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 2013, vol. 58, p. 1388.
  170. Jia, B. and Zhang, W., Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review, Nanoscale Reactions Lett., 2016, vol. 11, p. 64.
  171. Oladunni, J., Zain, J.H., Hai, A., Banat, F., and Bharath, G., A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: from theory to practice, Separation Purification Technol., 2018, vol. 22, p. 291.
  172. Andelman, M., Flow Through Capacitor basics, Separation Purification Technol., 2011, vol. 80, p. 262.
  173. Biesheuvel, P.M., Bazant, M.Z., Cusick, R.D., Hatton, T.A., Hatzell, K.B., Hatzell, M.C., Liang, P., Lin, S., Porada, S., Santiago, J.G., Smith, K.C., Stadermann, M., Su, X., Sun, X., Waite, T.D., van der Wal, A., Yoon, J., Zhao, R., Zou, L., and Suss, M.E., Capacitive Deionization–defining a class of desalination technologies, Applied Physics, 2017, vol. 16, p. 19.
  174. Volfkovich, Yu.M., Mikhalin, A.A., and Rychagov, A.Yu., Surface Conductivity Measurements for Porous Carbon Electrodes, Russ. J. Electrochem., 2013, vol. 49, p. 594.
  175. Volfkovich, Yu.M., Kononenko, N.A., Mikhalin, A.A., Kardash, M.M., Rychagov, A.Yu., Tsipliaev, S.V., Shkirskaya, S.A., and Sosenkin, V.E., Capacitive deionization of water involving mosaic membranes based on fibrous polymer matrices, Desalination Water Treatment, 2020, vol. 182, p. 77.