Examples



mdbootstrap.com



 
Статья
2022

Hydrolysis of NiSO4 and FeSO4 Mixture in Microdrops of Their Aqueous Solution Deposited at the Surface of an Alkali Solution and Obtaining Vase-Like Microcapsules with Walls of Ni(II) and Fe(III) Double Hydroxide


V. P. TolstoyV. P. Tolstoy, A. A. MeleshkoA. A. Meleshko
Российский журнал общей химии
https://doi.org/10.1134/S1070363222020190
Abstract / Full Text

The application of microdrops of an aqueous solution of a mixture of NiSO4 (c 0.4 mol/L) and FeSO4 (c 0.1 mol/L) salts at the surface of a solution of a mixture of NaOH (c 1 mol/L) and NaBH4 (c 0.5 mol/L) has led to rapid hydrolysis of nickel(II) and iron(II) salts and the formation of open vase-like microcapsules with diameter of 1–10 μm and 20–40 nm thick walls of Ni(II) and Fe(III) double hydroxide the microdroplet–solution interface. These microcapsules can be transferred from the solution surface to the surface of the nickel electrode using the vertical elevator technique. The study of the electrochemical properties of such electrodes has shown that they are active electrocatalysts in the oxygen evolution reaction during water electrolysis in an alkaline medium and they are characterized by the overpotential value of 280 mV and Tafel slope of 69.1 mV/dec.

Author information
  • St. Petersburg State University, 190034, St. Petersburg, RussiaV. P. Tolstoy & A. A. Meleshko
References
  1. Shi, M., Min, X., Ke, Y., Lin, Z., Yang, Z., Wang, S., Peng, N., Yan, X., Luo, S., Wu, J., and Wei, Y., Sci. Total Environ., 2021, vol. 752, p. 141930. https://doi.org/10.1016/j.scitotenv.2020.141930
  2. Berezhnaya, M.V., Perov, N.S., Almjasheva, O.V., Mittova, V.O., Nguyen, A.T., Mittova, I.Y., Druzhinina, L.V., and Alekhina, Y.A., Russ. J. Gen. Chem., 2019, vol. 89, p. 480. https://doi.org/10.1134/S1070363219030198
  3. Shilova, O.A., J. Sol-Gel Sci. Technol., 2020, vol. 95, p. 599. doi10.1007/s10971-020-05279-y
  4. Gurenko, V.E., Gulina, L.B., and Tolstoy, V.P., J. Sol-Gel Sci. Technol., 2019, vol. 92, p. 342. https://doi.org/10.1007/s10971-019-04949-w
  5. Olenin, A.Y. and Lisichkin, G.V., Russ. J. Gen. Chem., 2019, vol. 89, p. 1451. https://doi.org/10.1134/S1070363219070168
  6. Popkov, V.I. and Tolstoy, V.P., Surf. Coat. Technol., 2021, vol. 409, no. 126914, p. 1. https://doi.org/10.1016/j.surfcoat.2021.126914
  7. Gulina, L.B., Tolstoy, V.P., Solovev, A.A., Gurenko, V.E., Huang, G., and Mei, Y., Prog. Nat. Sci., 2020, vol. 30, no. 3, p. 279. https://doi.org/10.1016/j.pnsc.2020.05.001
  8. Tolstoy, V.P., Vladimirova, N.I., and Gulina, L.B., Mendeleev Commun., 2019, vol. 29, no. 6, p. 713. https://doi.org/10.1016/j.mencom.2019.11.039
  9. Arcelli, L., Swinerd, V., Fletcher, J., and Mann, S., Chem. Mater., 2007, vol. 19, no. 3, p. 503. https://doi.org/10.1021/cm0621951
  10. Lipina, A.A., Khakhin, S.N., Odintsova, O.I., Vladimirtseva, E.L., and Avakova, E.O., Russ. J. Gen. Chem., 2020, vol. 90, p. 1781. https://doi.org/10.1134/S1070363220090315
  11. Sun, Z., Han, Z., Liu, H., Wu, D., and Wang, X., Renew. Energ., 2021,vol. 174, p. 557. https://doi.org/10.1016/j.renene.2021.04.089
  12. Xu, H., Shan, C.,Wu, X., Sun, M., Huang, B., Tang, Y., and Yan, C.-H., Energy Environ. Sci., 2020, vol. 13, p. 2949. https://doi.org/10.1039/D0EE02113J
  13. Cao, Y., Yuan, X., Wang, X., Li, W., and Yang, H., J. Mol. Liq., 2021, vol. 342, p. 117497. https://doi.org/10.1016/j.molliq.2021.117497
  14. Wan, L. and Wang, P., Int. J. Hydrog. Energy, 2021, vol. 46, no. 12, p. 8356. https://doi.org/10.1016/j.ijhydene.2020.12.061
  15. Liao, F., Zhao, X., Yang, G., Cheng, Q., Mao, L., and Chen, L., J. Alloys Compd., 2021, vol. 872, p. 159649. https://doi.org/10.1016/j.jallcom.2021.159649
  16. Kazimirov, V.Yu., Smirnov, M.B., Bourgeois, L., GuerlouDemourgues, L., Servant, L., Balagurov, A.M., Natkaniec, I., Khasanova, N.R., and Antipov, E.V., Solid State Ionics, 2010, vol. 181, p. 1764. https://doi.org/10.1016/j.ssi.2010.10.002
  17. Sriram, B., Baby, J.N., Wang, S.-F., Ranjitha, R., Govindasamy, M., George, M., ACS Sustain. Chem. Eng., 2020, vol. 8, no. 48, p. 17772. https://doi.org/10.1021/acssuschemeng.0c06070
  18. Sanati, S. and Rezvani, Z., Ultrason. Sonochem., 2018, vol. 48, p. 199. https://doi.org/10.1016/j.ultsonch.2018.05.035
  19. Tolstoy, V.P., Kuklo, L.I., and Gulina, L.B., J. Alloys Compd., 2019, vol. 786, p. 198. https://doi.org/10.1016/j.jallcom.2019.01.324