Effect of Mechanical Activation on Synthesis and Electrochemical Properties of Lithium Vanadium Phosphate

A. G. Kartushin A. G. Kartushin , I. A. Putsylov I. A. Putsylov , V. A. Zhorin V. A. Zhorin , S. E. Smirnov S. E. Smirnov , S. A. Fateev S. A. Fateev
Российский электрохимический журнал
Abstract / Full Text

The effect of mechanical activation in a BM6 Pro planetary mill on the synthesis and electrochemical properties of lithium vanadium phosphate is studied. It is found that the optimal rate and time of mechanical activation are 500 rpm and 40 min, respectively. The initial discharge capacity of the electrodes based on synthesized lithium vanadium phosphate is 136 mA h g–1 at a current of 0.2 C and 112 mA h g–1 at a current of 1.0 C. The electrodes retain high electrochemical reversibility and structural stability in this range of discharge currents.

Author information
  • National Research University “Moscow Power Engineering Institute”, Moscow, Russia

    A. G. Kartushin, I. A. Putsylov, S. E. Smirnov & S. A. Fateev

  • Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia

    V. A. Zhorin

  1. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, no. 8, p. 826.
  2. Zhou, G. and Guo, S., Comparative study on hydrothermally synthesized LiMNxFE1–xPO4 (x = 0~1) cathode at full-cell level, Russ. J. Appl. Chem., 2017, vol. 90, no. 7, p.1188.
  3. Smirnov, K.S., Zhorin, V.A., and Yashtulov, N.A., Effect of mechanical activation on characteristics of electrodes based on lithium–iron phosphate, Russ. J. Appl. Chem., 2013, vol. 86, no. 4, p. 602.
  4. Patoux, S., Wurm, C., Morcrette, M., Rousse, G., and Masquelier, C., Multicore-shell carbon-coated lithium manganese phosphate and lithium vanadium phosphate composite material with high capacity and cycling performance for lithium-ion battery, J. Power Sources, 2003, vols. 119–121, p. 278.
  5. Chang, C., Xiang, J., Shi, X., Han, X., Yuan, L., and Sun, J., Hydrothermal synthesis of carbon-coated lithium vanadium phosphate, Electrochim. Acta, 2008, vol. 54, p. 623.
  6. Huang, H., Faulkner, T., Barker, J., and Saidi, M.Y., Synthesis of iron phosphate powders by chemical precipitation route for high-power lithium iron phosphate cathodes, J. Power Sources, 2009, vol. 189, p 748.
  7. Fu, P., Zhao, Y., Dong, Y., An, X., and Shen, G., Synthesis of Li3V(PO4)3 with high performance by optimized solid-state synthesis routine, J. Power Sources, 2006, vol. 162, p. 651.
  8. Xun, S., Chong, J., Song, X., Liu, G., and Battaglia, V.S., Li4P2O7 modified high performance Li3V(PO4)3 cathode material, J. Mater. Chem., 2012, vol. 22, p. 15775.
  9. Peng, Y., Tan, R., Ma, J., Li, Q., Wang, T., and Duan, X., Electrospun Li3V(PO4)3 nanocubes/carbon nanofibers as free-standing cathodes for high-performance lithium-ion batteries, J. Mater. Chem. A, 2019, vol. 7, p. 14681.
  10. Liu, Q., Ren, L., and Zhang, L., Study on Li3V(PO4)3/C cathode materials prepared using pitch as a new carbon source by different approaches, Electrochim. Acta, 2016, vol. 187, p. 264.
  11. Ding, X.-K., Zhang, L.-L., Yang, X.-L., Fang, H., Zhou, Y.-X., Wang, J.-Q., and Ma, D., Anthracite-derived dual-phase carbon-coated Li3V(PO4)3 as high-performance cathode material for lithium-ion batteries, ACS, Appl. Mater. Interfaces, 2017, vol. 9 (49), p. 42788.
  12. Liu, H., Gao, P., Fang, J., and Yang, G., Kinetics of conventional carbon-coated Li3V(PO4)3 and nanocomposite Li3V(PO4)3/graphene as cathode materials for lithium-ion batteries, Chem. Commun., 2011, vol. 47, p. 9110.
  13. Zhang, L.-L., Liang, G., Peng, G., Zou, F., Huang, Y.-H., Croft, M.C., and Ignatov, A., Novel synthesis of low carbon-coated Li3V(PO4)3 cathode material for lithium-ion batteries, J. Phys. Chem. C., 2012, vol. 116, p. 12401.
  14. Zhai, J., Zhao, M., Wang, D., and Qiao, Y., Effect of MgO nanolayer coated on Li3V(PO4)3/C cathode material for lithium-ion battery, J. Alloys Compds., 2010, vol. 502, p. 401.
  15. Zhai, J., Zhao, M., and Wang, Y.-Z., Effect of Al2O3-coating on the electrochemical performances of Li3V(PO4)3/C cathode material, J. Solid State Electrochem., 2014, vol. 18, no 10, p. 2857.
  16. Kosova, N.V. and Devyatkina, E.T., Synthesis of nanosized materials for lithium-ion batteries by mechanical activation. Studies of their structure and properties, Russ. J. Electrochem., 2012, vol. 48, p. 320.
  17. Kosova, N.V. and Devyatkina, E.T., Synthesis of novel nanostructured composite cathode materials for lithium-ion batteries using mechanical activation, Dokl. Chem., 2014, vol. 458, no. 6, p. 668.
  18. Vorob’ev, I.S., Smirnov, S. S., Smirnov, S.E., and Zhorin, V.A., Synthesis and electrochemical properties of double lithium-titanium phosphate, Russ. J. Appl. Chem., 2014, vol. 87, no. 6, p. 734.
  19. Vorob’ev, I.S., Zhorin, V.A., Smirnov, K.S., and Smirnov, S.E., Synthesis and electrochemical properties of composite cathode materials, Russ. J. Appl. Chem., 2015, vol. 88, no. 3, p. 394.
  20. Smirnov, S.E., Zhorin, V.A., Kiselev, M.R., Smirnov, S.S., and Yashtulov, N.A., Synthesis and electrochemical properties of lithium titanate, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 5, p. 803.
  21. Smirnov, S.E., Putsylov, I.A., Fateev, S.A., Zhorin, V.A., and Kartushin, A.G., Synthesis of promising cathode material for lithium polymer batteries, E3S Web Conf., 2019, vol. 103, p. 02008. https://doi.org/10.1051/e3sconf/201910302008
  22. Zlokazov, V.B. and Chernyshev, V.V., MRIA—a program for a full profile analysis of powder multiphase neutron-diffraction time-of-flight (direct and Fourier) spectra, J. Appl. Cryst., 1992, vol. 25, p. 447.