Статья
2019

Electrocatalytic Efficiency of PbO2 in Water Decontamination


F. Smaili F. Smaili , A. Benchettara A. Benchettara
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519100082
Abstract / Full Text

In this work, the electrodeposition of lead dioxide on a Pb electrode was realized by a potentiostatic method in 0.5 mol/L sulfuric acid solution at 1.3 V (ECS) during 30 min. The result of XRD showed that the crystal structure of PbO2 in acid solution is pure β-PbO2. The electrodegradation of tris (4-(dimethylamino) phenyl) methylium chloride (methyl violet 10B) dye in an aqueous solution of 0.1 mol/L sodium sulfate has been studied by potentiostatic method using β-PbO2 as anode. The methyl violet 10B was successfully oxidized by hydroxyl radicals electrogenerated from oxidation of water on the Pb/β-PbO2 electrode surface. The anodic oxidation of methyl violet 10B followed the pseudo-first order kinetics. The time and applied potential had significant effect on the electrochemical degradation of methyl violet 10B at the Pb/β-PbO2 electrode with a degradation rate of 10.5 g/(m2 day).

Author information
  • Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, (USTHB) BP 32, El Alia Bab Ezzouar, 16111, Algiers, Algeria

    F. Smaili & A. Benchettara

References
  1. Rajeev, K. and Rais, A., Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW), Desalination, 2011, vol. 265, p. 112.
  2. Panizza, M. and Cerisola, G., Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 2009, vol. 109, p. 6541.
  3. Scialdone, O., Randazzo, S., Galia, A., and Silvestri, G., Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl, Water Res., 2009, vol. 43, p. 2260.
  4. Aquino, J.M., Irikura, K., Rocha-Filho, R.C., Bocchi, N., and Biaggio, S.R., A comparison of electrodeposited Ti/β-PbO2 and Ti–Pt/β-PbO2 anodes in the electrochemical degradation of the direct yellow 86 dye, Quim. Nova., 2010, vol. 33, p. 2124.
  5. Cavalcanti, E.B., Garcia-Segura, S., Centellas, F., and Brillas, E., Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode: degradation kinetics and oxidation products, Water Res., 2013, vol. 47, p. 1803.
  6. Jager, D., Kupka, D., Vaclavikova, M., Ivanicova, L., and Gallios, G., Degradation of reactive black 5 by electrochemical oxidation, Chemosphere, 2017, vol. 120, p. 405.
  7. Singh, S., Lien Lo, S., Srivastava, V.C., and Hiwar-kar, A.D., Comparative study of electrochemical oxidation for dye degradation: parametric optimization and mechanism identification, J. Environ. Chem. Eng., 2016, vol. 4, p. 2911.
  8. Bassuoni, D.G., Hamad, H.A., El-Ashtoukhy, E-S.Z., Amin, N.K., and Abd El-Latif, M.M., Comparative performance of anodic oxidation and electrocoagulation as clean processes for electrocatalytic degradation of diazo dye Acid Brown 14 in aqueous medium, J. Hazard. Mater., 2017, vol. 335, p. 178.
  9. Dusan Z, M., Milka L, A. I., Antonije E, O., and Branimir N, G., Decolorization of textile dye CI Basic Yellow 28 with electrochemically generated active chlorine, Chem. Eng. J., 2012, vol. 206, p. 151.
  10. Sasidharan Pillai, I.M. and Gupta, A.K., Potentiostatic electrodeposition of a novel cost effective PbO2 electrode: degradation study with emphasis on current efficiency and energy consumption, J. Electroanal. Chem., 2015, vol. 749, p. 16.
  11. Oliveira, F.H., Osugi, M.E., Paschoal, F.M.M., Profeti, D., Olivi, P., and Zanoni, M.V.B., Electrochemical oxidation of an acid dye by active chlorine generated using Ti/Sn(1 – x)IrxO2 electrodes, Appl. Electrochem., 2007, vol. 37, p. 583.
  12. Chen, Y., Hong, L., Xue, H., Han, W., Wang, L., Sun, X., and Li, J., Preparation and characterization of TiO2–NTs/SnO2–Sb electrodes by electrodeposition, J. Electroanal. Chem., 2010, vol. 648, p. 119.
  13. Ciriaco, L., Santos, D., Pacheco, M.J., and Lopes, A., Anodic oxidation of organic pollutants on a Ti/SnO2–Sb2O4 anode, Appl. Electrochem., 2011, vol. 41, p. 577.
  14. Chen, Y., Ni, Q., Han, W., Wang, L., Kirk, D.W., and Thorpe, S.J., Electroless deposition of SnOx–Sb nanocoating in ordered titania pores for enhancing electrical conductivity, Scr. Mater., 2011, vol. 65, p. 986.
  15. Chen, X. and Chen, G., Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution, Electrochim. Acta, 2005, vol. 50, p. 4155
  16. Tolba, R., Tian, M., Wen, J., Jiang, Z., and Chen, A., Electrochemical oxidation of lignin at IrO2- based oxide electrodes, J. Electroanal. Chem., 2010, vol. 649, p. 9.
  17. Regisser, F., Lavoie, M., Champagne, G.Y., and Belanger, D., Randomly oriented graphite electrode. Part 1. Effect of electrochemical pretreatment on the electrochemical behavior and chemical composition of the electrode, J. Electroanal. Chem., 1996, vol. 415, p. 47.
  18. Oturan, N., Hamza, M., Ammar, S., Abdelhedi,R., and Oturan, M.A., Oxidation/mineralization of 2-nitrophenol in aqueous medium by electrochemical advanced oxidation processes using Pt/carbon-felt and BDD/carbon-felt cells, J. Electroanal. Chem., 2011, vol. 661, p. 66.
  19. Santos, E.V., Sáez, C., Martínez-Huitle, C.A., Cañizares, P., and Rodrigo, M.A., The role of particle size on the conductive diamond electrochemical oxidation of soil-washing effluent polluted with atrazine, Electrochem. Commun., 2015, vol. 55, p. 26.
  20. Araújo, D.M., Sáez, C., Martínez-Huitle, C.A., Cañizares, P., and Rodrigo, M.A., Influence of mediated processes on the removal of Rhodamine with conductive-diamond electrochemical oxidation, Appl. Catal., B: Environ., 2015, vol. 166, p. 454.
  21. Garcia-Segura, S., Vieira dos Santos, E., and Martínez-Huitle, C.A., Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: a mini review, Electrochem. Commun., 2015, vol. 59, p. 52.
  22. Chianca de Mouraa, D., Antonio Quirozb, M., Ribeiro da Silvaa, D., Salazarc, R., and Martínez-Huitlea, C.A., Electrochemical degradation of Acid Blue dye using TiO2-nanotubes decorated with PbO2 as anode, Nanotechnol. Monit. Manage, 2016, vol. 5, p. 13.
  23. Awad, H.S. and Galwa, N.A., Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors, Chemosphere, 2005, vol. 61, p. 1327.
  24. Devilliers, D., Dinh-Thi, M.T., Mahe, E., and Xuan, Q.L., Cr(III) oxidation with lead dioxide-based anodes, Electrochim. Acta, 2003,vol. 48, p. 4301.
  25. Sirés, I., Brillas, E., Cerisola, G., and Panizza, M., Comparative depollution of mecopropaqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes, Electroanal. Chem., 2008, vol. 38, p. 923.
  26. Li, X., Yang, W., Chen, X., Li, W., Luo, B., and Wang, K., Preparation of 3D PbO2 nanospheres SnO2 nanowires/Ti electrode and its application in methyl orange degradation, Electrochim. Acta, 2014, vol. 146, p. 15.
  27. Panizza, M. and Cerisola, G., Influence of anode material on the electrochemical oxidation of 2-naphthol: part 2. Bulk electrolysis experiments, Electrochim. Acta, 2004, vol. 49, p. 3221.
  28. Polcaro, A.M., Palmas, S., Renoldi, F., and Mascia, M., On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment, Appl. Electrochem., 1999, vol. 29, p. 147.
  29. Quiroz, M.A., Reyna, S., Martinez-Huitle, C.A., Ferro, S., and De Battisti, A., Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes, Appl. Catal. B, 2005, vol. 59, p. 259.
  30. Chakraborty, S., Chowdhury, S., and Das Saha, P., Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk, Carbohydr. Polym., 2011, vol. 86, p. 1533.
  31. Mittal, A., Malviya, J., and Kaur, A.D., and Gupta, V.K., Adsorption of hazardous dye crystal violet from wastewater by waste materials, Colloid Interface Sci., 2010, vol. 343, p. 463.
  32. Rais, A., Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder, Hazard. Mater., 2009, vol. 171, p. 767.
  33. Silva Ferreira, B.C., Teodoro, F.S., Mageste, A.B., Gil, L.F., Pereira de Freitas, R., and Gurgel, L.V.A., Application of a new carboxylate-functionalized sugarcane bagasse for adsorptive removal of crystal violet from aqueous solution: kinetic, equilibrium and thermodynamic studies, Ind. Crops. Prod., 2015, vol. 65, p. 521.
  34. Zhou, D. and Gao, L., Effect of electrochemical preparation methods on structure and properties of PbO2 anodic layer, Electrochim. Acta, 2007, vol. 53, p. 2060.
  35. Velichenko, A.B. and Devilliers, D., Electrodeposition of fluorine-doped lead dioxide, J. Fluorine, Chem., 2007, vol. 128, p. 269.
  36. Hongyi, L., Yong, C., Yaohui, Z., Weiqing, H., Xiuyun, S., Jiansheng, L., and Lianjun, W., Preparation of Ti/PbO2–Sn anodes for electrochemical degradation of phenol, J. Electroanal. Chem., 2013, vol. 689, p. 193.
  37. Yu, N. and Gao, L., Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor, Electrochim. Commun., 2009, vol. 11, p. 220.
  38. Bingqian, D., Zhen, C., Qiang, Y., Wei, Z., Wen, Y., and Zhongcheng, G., Effect of temperature on the residual stress of a β-PbO2 coating, Surf. Eng., 2017, vol. 34, p. 689.
  39. Hao, X., Dan, S., Qian, Z., Honghui, Y., and Yan, W., Preparation and characterization of PbO2 electrodes from electro-deposition solutions with different copper concentration, RSC Adv., 2014, vol. 4, p. 25011.
  40. Brillas, E., Sirés, I., and Oturan, M.A., Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 2009, vol. 109, p. 6570.
  41. Johra, F.T. and Jung, W.G., RGO–TiO2–ZnO composites: synthesis, characterization, and application to photocatalysis, Appl. Catal. A, 2015, vol. 491, p. 52.
  42. Rodriguez, J., Rodrigo, M. A., Panizza, M., and Cerisola, G., Electrochemical oxidation of Acid Yellow 1 using diamond anode, J. Appl Electrochem., 2009, vol. 39, p. 2285.