Examples



mdbootstrap.com



 
Статья
2021

Dehydrogenation of Propane in the Presence of CO2 on Supported Monometallic MOy/SiO2 and CrOxMOy/SiO2 (M = Fe, Co, and Ni) Bimetallic Catalysts


M. A. TedeevaM. A. Tedeeva, A. L. KustovA. L. Kustov, P. V. PribytkovP. V. Pribytkov, A. A. StrekalovaA. A. Strekalova, K. B. KalmykovK. B. Kalmykov, S. F. DunaevS. F. Dunaev, L. M. KustovL. M. Kustov
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421010295
Abstract / Full Text

An analysis is performed of the physicochemical properties of M/SiO2 (M = Fe, Co, and Ni) oxide monometallic and CrM/SiO2 (M = Fe, Co, and Ni) bimetallic catalysts supported on amorphous silica. The catalysts are characterized via TGA, XRD, UV–Vis diffuse reflectance spectroscopy, and SEM. Adding 1 wt % of a second transition metal (Fe, Ni, and Co) to the 3% CrOx/SiO2 chromium oxide catalyst substantially raises the conversion of propane to 64% with a drop in the selectivity towards propylene and formation of methane as a main by-product in the case of nickel. Introducing iron and cobalt raises the selectivity towards propylene to 72% with a drop in the conversion of propane.

Author information
  • Department of Chemistry, Moscow State University, 119991, Moscow, RussiaM. A. Tedeeva, A. L. Kustov, P. V. Pribytkov, K. B. Kalmykov, S. F. Dunaev & L. M. Kustov
  • Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119334, Moscow, RussiaA. L. Kustov, P. V. Pribytkov & L. M. Kustov
  • National University of Science and Technology (MISiS), 119049, Moscow, RussiaA. L. Kustov, A. A. Strekalova & L. M. Kustov
References
  1. H. A. Maddah, Am. Sci. Res. J. Eng., Technol., Sci. 45, 49 (2018).
  2. Y. Wang, Y. Ohishi, T. Shishido, et al., Stud. Surf. Sci. Catal. 146, 725 (2003).
  3. Y. Wang, Y. Ohishi, T. Shishido, et al., J. Catal. 220, 347 (2003).
  4. M. Kocoń, P. Michorczyk, and J. Ogonowski, Catal. Lett. 101, 53 (2005).
  5. O. Krylov, A. Mamedov, and S. Mirzabekova, Catal. Today 24, 371 (1995).
  6. O. Krylov, A. Mamedov, and S. Mirzabekova, Ind. Eng. Chem. Res. 34, 474 (1995).
  7. I. Takahara, M. Saito, M. Inaba, and K. Murata, Catal. Lett. 102, 201 (2005).
  8. A. O. Turakulova, A. N. Kharlanov, A. V. Levanov, et al., Russ. J. Phys. Chem. A 91, 17 (2017).
  9. P. Michorczyk, P. Kuśtrowski, L. Chmielarz, and J. Ogonowski, React. Kinet. Catal. Lett. 82, 121 (2004).
  10. P. Michorczyk and J. Ogonowski, Appl. Catal., A 251, 425 (2003).
  11. B. Zheng, W. Hua, Y. Yue, and Z. Gao, J. Catal. 232, 143 (2005).
  12. B. Xu, B. Zheng, W. Hua, et al., J. Catal. 239, 470 (2006).
  13. P. Michorczyk, K. Góra-Marek, and J. Ogonowski, Catal. Lett. 109, 195 (2006).
  14. I. I. Mishanin, A. I. Zizganova, and V. I. Bogdan, Russ. Chem. Bull., Int. Ed. 67, 1031 (2018).
  15. T. A. Bugrova, V. V. Dutov, V. A. Svetlichnyi, et al., Catal. Today 333, 71 (2019).
  16. K. Nakagawa, C. Kajita, N. Ikenaga, et al., Catal. Today 84, 149 (2003).
  17. J. Ding, Z. Qin, X. Li, et al., J. Mol. Catal A: Chem. 315, 221 (2010).
  18. E. Sadeghi, M. S. Oskoui, M. Khatamian, and A. H. Ghassemi, Mod. Res. Catal. 5 (3), 75 (2016).
  19. P. Michorczyk, K. Zeńczak, R. Niekurzak, and J. Ogonowski, Pol. J. Chem. Tech. 14 (4), 77 (2012).
  20. N. D. Evdokimenko and A. L. Kustov, et al., Mendeleev Commun. 28, 147 (2018).
  21. N. D. Evdokimenko, K. O. Kim, G. I. Kapustin, et al., Catal. Ind. 10, 288 (2018).
  22. P. Michorczyk, K. Zenczak-Tomera, B. Michorczyk, et al., J. CO2 Util. 36, 54 (2020).
  23. Y. A. Agafonov, N. A. Gaidai, and A. L. Lapidus, Kinet. Catal. 59, 744 (2018).
  24. K. Nakagawa, C. Kajita, N. Ikenaga, et al., Catal. Today 84, 149 (2003).
  25. X. Ge, H. Zou, J. Wang, and J. Shen, React. Kinet. Catal. Lett. 85, 253 (2005).
  26. M. A. Tedeeva, A. L. Kustov, P. V. Pribytkov, et al., Russ. J. Phys. Chem. A 92, 2403 (2018).
  27. B. M. Weckhuysen, I. E. Wachs, and R. A. Schoonheydt, Chem. Rev. 96, 3327 (1996).
  28. P. Michorczyk, J. Ogonowski, P. Kuśtrowski, and L. Chmielarz, Appl. Catal. A 349, 62 (2008).
  29. F. Zhang, R. Wu, Y. Yue, W. Yang, et al., Microporous Mesoporous Mater. 145, 194 (2011).
  30. H.-M. Wang, Y. Chen, X. Yan, et al., Microporous Mesoporous Mater. 284, 69 (2019).
  31. J. Xiong, Y. Li, C. Pang, et al., Environ. Sci. Pollut. Res. 26, 16000 (2019).
  32. S. Tuti and F. Pepe, Catal. Lett. 122, 196 (2008).
  33. N. Turrà, A. B. Acuña, B. Schimmöller, et al., Top. Catal. 54, 737 (2011).
  34. R. Koirala, R. Buechel, S. E. Pratsinis, and A. Baiker, Appl. Catal., A 527, 96 (2016).
  35. L. Zhang, J. Lin, and Y. Chen, J. Chem. Soc., Faraday Trans. 88, 2075 (1992).
  36. B. Scheffer, J. J. Heijeinga, and J. A. Moulijn, J. Phys. Chem. 91, 4752 (1987).
  37. Q. L. Manh Ha, U. Armbruster, C. Kreyenschulte, et al., Catal. Today 334, 203 (2018).
  38. J. A. Mendoza-Nieto, F. Robles-Méndez, and T. E. Klimova, Catal. Today 250, 47 (2015).
  39. T. F. Sheshko and Y. M. Serov, Russ. J. Phys. Chem. A 85, 51 (2011).