Effect of N719 Dye Dipping Temperature on the Performance of Dye-Sensitized Solar Cell

M. Y. A. Rahman M. Y. A. Rahman , L. Roza L. Roza , S. A. M. Samsuri S. A. M. Samsuri , A. A. Umar A. A. Umar
Российский электрохимический журнал
Abstract / Full Text

Preparation parameter of dye plays important role in determining DSSC performance. This paper reports the influence of N719 dye dipping temperature on the optical properties and performance parameters of the DSSC utilizing TiO2 films prepared via microwave technique. The TiO2 coated N719 dye films were prepared at various temperatures, namely, 30, 50, 60, 70 and 80°C. It is found that the TiO2 film dipped into N719 dye solution at 50°C possesses the broadest optical absorption window and the highest dye loading. It is also found that the dye dipping temperature does not affect the leak current in the device. The short-circuit current density (JSC) and power conversion efficiency (η) are strongly influenced by the dipping temperature. The DSSC utilizing the sample prepared at 50°C demonstrated the highest JSC and η of 4.06 mA cm–2 and 1.36%, respectively due to highest dye loading and recombination resistance.

Author information
  • Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia

    M. Y. A. Rahman & A. A. Umar

  • Program Studi Pendidikan Fisika, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Prof, Dr Hamka, Jakarta Timur, 13730, Indonesia

    L. Roza

  • Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, Penang, 11800, Malaysia

    S. A. M. Samsuri

  1. Chen, C.Y., Wu, S.-J., Wu, C.-G., Chen, J.-G., and Ho, K.-C., A ruthenium complex with super high lightharvesting capacity for dye-sensitized solar cells, Angew. Chem., Int. Ed., 2006, vol. 45, p. 5822.
  2. Campbell, W.M., Jolley, K.W., Wagner, P., Wagner, K., Walsh, P.J., Gordon, K.C., Mende, L.S., Nazeeruddin, M.K., Wang, Q., Gratzel, M., and Officer, D.L., Highly efficient porphyrin sensitizers for dye-sensitized solar cells, J. Phys. Chem. C, 2007, vol. 111, p. 11760.
  3. Wang, Z.-S., Cui, Y., Hara, K., Dan-oh, Y., Kasada, C., and Shinpo, A., A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells, Adv. Mater., 2007, vol. 19, pp. 1138–1141.
  4. Malia, S.S., Betty, C.A., Bhosale, P.N., and Patil, P.S., Eosin-Y and N3-dye sensitized solar cells (DSSCs) based on novel nanocoral TiO2: A comparative study, Electrochim. Acta, 2012, vol. 59, p. 113.
  5. Wongcharee, K., Meeyoo, V., and Chavadej, S., Dyesensitized solar cell using natural dyes extracted from rosella and blue pea flowers, Sol. Energy Mater. Sol. Cells, 2007, vol. 91, p. 566.
  6. Chang, H., Wu, H.M., Chen, T.L., Huang, K.D., Jwo, C.S., and Lo, Y.J., Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea, J. Alloys Compd., 2010, vol. 495, p. 606.
  7. Calogero, G. and Di Marco, G., Red sicilian orange and purple eggplant fruits as natural sensitizers for dyesensitized solar cells, Sol. Energy Mater. Sol. Cells, 2008, 92, p. 1341.
  8. Rahman, M.Y.A., Umar, A.A., Roza, L., and Salleh, M.M., Effect of organic dye on the performance of dye-sensitized solar cell utilizing TiO2 nanostructure films synthesized via CTAB-assisted liquid phase deposition technique, Russ. J. Electrochem., 2014, vol. 50, p. 1072.
  9. Rahman, M.Y.A., Umar, A.A., Taslim, R., and Salleh, M.M., Effect of organic dye, the concentration and dipping time of the organic dye N719 on the photovoltaic performance of dye sensitized ZnO solar cell prepared by ammonia-assisted hydrolysis technique, Electrochim. Acta, 2003, vol. 88, p. 639.
  10. Rahman, M.Y.A., Umar, A.A., Roza, L., and Salleh, M.M., Effect of optical property of surfactant treated TiO2 nanostructure on the performance of TiO2 photoelectrochemical cell, J. Solid State Electrochem., 2012, vol. 16, p. 2005.
  11. Rika Rahman, M.Y.A., Salleh, M.M., Umar, A.A., and Ahmad, A., Effect of ionic conductivity of a PAN-PCLiClO4 solid polymeric electrolyte on the performance of a TiO2 photoelectrochemical cell, J. Solid State Electrochem., 2010, vol. 4, p. 2089.
  12. Huang, Z., Natu, G., Ji, Z., He, M., Yu, M., and Wu, Y., Probing the low fill factor of NiO p-type dyesensitized solar cells, J. Phys. Chem. C, 2012, vol. 116, p. 26239.
  13. Wijeratne, K., Akilavasan, J., Thelakkat, M., and Bandara, J., Enhancing the solar cell efficiency through pristine 1-dimentional SnO2 nanostructures: Comparison of charge transport and carrier lifetime of SnO2 particles vs. nanorods, Electrochim. Acta, 2012, vol. 72, p. 192.
  14. Kandavelu, V., Huang, H.-S., Jian, J.-L., Yang, T.C.-K., Wang, K.-L., and Huang, S.-T., Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell, Sol. Energy, 2009, vol. 83, p. 574.
  15. Nazeeruddin, Md.K., Baranoff, E., and Grätzel, M., Dye-sensitized solar cells: A brief overview, Sol. Energy, 2011, vol. 85, p. 1172.
  16. Hirose, F., Shikaku, M., Kimura, Y., and Niwano, M., IR study on N719 dye adsorption with high temperature dye solution for highly efficient dye-sensitized solar cells, J. Electrochem. Soc., 2010, vol. 157, p. B1578.