Examples



mdbootstrap.com



 
Статья
2021

Synthesis, structure, and in vitro evaluation of biological activity of CuII furancarboxylates against the non-pathogenic M. smegmatis strain


I. A. LutsenkoI. A. Lutsenko, M. A. KiskinM. A. Kiskin, K. A. KoshenskovaK. A. Koshenskova, P. V. PrimakovP. V. Primakov, A. V. KhoroshilovA. V. Khoroshilov, O. B. BekkerO. B. Bekker, I. L. EremenkoI. L. Eremenko
Российский химический вестник
https://doi.org/10.1007/s11172-021-3109-3
Abstract / Full Text

The reaction of copper(ii) acetate with 2-furancarboxylate (Hfur, pyromucate) anions and the N-donor ligands 4-phenylpyridine (phpy) and 3-aminopyridine (NH2py) in acetonitrile afforded the mononuclear complexes of the composition [Cu(fur)2(phpy)2(H2O)] · phpy (1) and [Cu(fur)2(NH2py)2] (2), respectively. The structures of the complexes were established by X-ray diffraction. The simultaneous thermal analysis of the thermal behavior of complex 1 showed that this complex is thermally stable up to 125 °C. The in vitro biological activity of complexes 1 and 2 was evaluated against the non-pathogenic mycobacterial Mycolicibacterium smegmatis strain.

Author information
  • N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991, Moscow, Russian FederationI. A. Lutsenko, M. A. Kiskin, A. V. Khoroshilov & I. L. Eremenko
  • D. I. Mendeleev University of Chemical Technology of Russia, 9 pl. Miusskaya, 125047, Moscow, Russian FederationK. A. Koshenskova
  • A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 11991, Moscow, Russian FederationP. V. Primakov
  • N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 ul. Gubkina, 119334, Moscow, Russian FederationO. B. Bekker
References
  1. M. M. Rashad, O. A. Fouad, Mater. Chem. Phys., 2005, 94, 365.
  2. M. K. Karunananda, F. X. Vázquez, E. E. Alp, W. Bi, S. Chattopadhyay, T. Shibatad, N. P. Mankad, Dalton Trans., 2014, 43, 13661.
  3. M. Veith, M. Haas, V. Huch, Chem. Mater., 2005, 17, 95.
  4. R. V. Godbole, P. Rao, P. S. Alegaonkar, S. Bhagwat, Mater. Chem. Phys., 2015, 161, 135.
  5. L. W. Yeary, J. W. Moon, C. J. Rawn, L. J. Love, A. J. Rondinone, J. R. Thompson, B. C. Chakoumakos, T. J. Phelps, J. Magn. Magn. Mater., 2011, 323, 3043.
  6. A. Y. Louie, T. Meade, J. Proc. Natl. Acad. Sci. USA, 1998, 95, 6663.
  7. S. Rojas, E. Quartapelle-Procopio, F. J. Carmona, F. J. Carmona, M. A. Romero, J. A. R. Navarro, E. Barea, J. Mater. Chem. B, 2014, 2, 2473.
  8. K. H. Thompson, C. J. Orvig, Inorg. Biochem., 2006, 100, 1925.
  9. N. Bello-Vieda, H. Pastrana, M. Garavito, A. Ávila, A. Celis, A. Muñoz-Castro, S. Restrepo, J. J. Hurtado, Molecules, 2018, 23, 361.
  10. L. Goodwin, Trop. Med. Hyg., 1995, 89, 339.
  11. A. Singh, A. K. Gupta, S. Singh, Nano Bio Medicine, 2020, 1.
  12. A. S. Brill, J. Biochem. Mol. Biol. Biophys., 1977, 26, 1.
  13. P. M. Punt, G. H. Clever, Chemistry, 2019, 25, 13987.
  14. C. L. Drennan, J. W. Peters, Curr. Opin. Struct. Biol., 2003, 13, 220.
  15. T. S. Coelho, P. C. B. Halicki, L. Silva de Menezes, J. R. Vicenti, B. L. Gonçalves, P. E. Almeida da Silva, D. F. Ramos, Lett. Appl. Microbiol., 2020, 71, 146.
  16. N. Chim, P. M. Johnson, C. W. Goulding, J. Inorg. Biochem., 2014, 133, 118.
  17. O. Krasnovskaya, A. Naumov, D. Guk, P. Gorelkin, A. Erofeev, E. Beloglazkina, A. Majouga, Int. J. Mol. Sci., 2020, 21, 3695.
  18. J. P. Rada, B. S. M. Bastos, L. Anselmino, C. H. J. Franco, M. Lanznaster, R. Diniz, C. O. Fernández, M. Menacho-Márquez, A. M. Percebom, N. A. Rey, Inorg. Chem., 2019, 58, 8800.
  19. K. Y. Djoko, C. L. Ong, M. J. Walker, A. G. McEwan, J. Biol. Chem., 2015, 290, 18954.
  20. Yu. A. Ovchinnikov, Bioorganicheskaya khimiya [Bioorganic Chemistry], Prosveshchenie, Moscow, 1987, 516 pp. (in Russian).
  21. A. H. Ngwane, R. D. Petersen, B. Baker, I. Wiid, H. N. Wong, R. K. Haynes, IUBMB Life, 2019, 71, 532.
  22. I. A. Lutsenko, D. E. Baravikov, M. A. Kiskin, Yu. V. Nelyubina, P. V. Primakov, O. B. Bekker, A. V. Khoroshilov, A. A. Sidorov, I. L. Eremenko, Russ. J. Coord. Chem., 2020, 46, 411.
  23. I. A. Lutsenko, D. S. Yambulatov, M. A. Kiskin, Yu. V. Nelyubina, P. V. Primakov, O. B. Bekker, A. A. Sidorov, I. L. Eremenko, Russ. J. Coord. Chem., 2020, 46, 787.
  24. I. A. Lutsenko, D. S. Yambulatov, M. A. Kiskin, Yu. V. Nelyubina, P. V. Primakov, O. B. Bekker, O. A. Levitskiy, T. V. Magdesieva, V. K. Imshennik, Yu. V. Maksimov, A. A. Sidorov, V. N. Danilenko, I. L. Eremenko, Chem. Select., 2020, 5, 11837.
  25. I. A. Lutsenko, M. A. Kiskin, Yu. V. Nelyubina, P. V. Primakov, M. A. Shmelev, N. N. Efimov, K. S. Babeshkin, A. V. Khoroshilov, A. A. Sidorov, I. L. Eremenko, Polyhedron, 2020, 190, 114764.
  26. S. Ramon-García, C. Ng, H. Anderson, J. D. Chao, X. Zheng, T. Pfeifer, Y. Av-Gay, M. Roberge, C. J. Thompson, Antimikrob. Agen. Chemother., 2011, 8, 3861.
  27. O. B. Bekker, D. N. Sokolov, O. A. Luzina, N. I. Komarova, Yu. V. Gatilov, S. N. Andreevskaya, T. G. Smirnova, D. A. Maslov, L. N. Chernousova, N. F. Salakhutdinov, V. N. Danilenko, Med. Chem. Res., 2015, 24, 2926.
  28. G. M. Sheldrick, Acta Cryst., 2015, A71, 3.
  29. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.