Examples



mdbootstrap.com



 
Статья
2021

Mercury and Methylmercury in the Bottom Sediments of Lake Baikal


T. N. MorshinaT. N. Morshina, N. N. Luk’yanovaN. N. Luk’yanova, T. B. MamchenkoT. B. Mamchenko, E. P. VirchenkoE. P. Virchenko, L. P. KopylovaL. P. Kopylova
Российский журнал общей химии
https://doi.org/10.1134/S1070363221130211
Abstract / Full Text

The results of long-term monitoring the total mercury and methylmercury levels in the bottom sediments of Lake Baikal are reported for the first time. It was shown that the levels of mercury and methylmercury in the lake sediments are within the range of the levels characteristic of unpolluted freshwater bodies. The factors affecting the accumulation of mercury and methylmercury in the upper layer of bottom sediments are revealed. A correlation between the organic carbon and particle size fractions is noted.

Author information
  • Typhoon Research and Production Association, 249038, Obninsk, RussiaT. N. Morshina, N. N. Luk’yanova, T. B. Mamchenko, E. P. Virchenko & L. P. Kopylova
References
  1. Petrosyan, V.S., Rossiya v okruzhayushchem mire (Russia in the Surrounding World), Marfenin, N.N., Ed., Moscow: MNEPU, 2007, p. 149.
  2. Fitzgerald, W.F. and Clarkson, T.W., Environ Health Perspect., 1991, vol. 96, p. 159.
  3. Mason, R.P., Fitzgerald, W.F., Hurley, J., Hanson, A.K., Donaghay, P.L., and Sieburth, J.M., Limnol. Oceanogr., 1993, vol. 38, issue 6, p. 1227.
  4. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. In: Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment, Winnipeg, 1999.
  5. Ullrich, S.M., Tanton, T.W., and Abdrashitova, S.A., Crit. Rev. Environ. Sci. Technol., 2001, vol. 31, no. 3, p. 241.
  6. R 52.24.815-2014, Moscow: Roshydromet, 2014. Moskva: Rosgidromet, 2014.
  7. RD 52.18.827-2016, Nizhniy Novgorod: Kirillitsa, 2017.
  8. RD 52.18.843-2016, Nizhny Novgorod: Kirillitsa, 2017.
  9. Bezrukov, P.L. and Lisitsyn, A.P., Trudy Irkutsk. Otd. Akad. Nauk SSSR, 1960, vol. 32, p. 3.
  10. Strakhov, N.M., Brodskaya, N.G., and Knyazeva, L.M., Obrazovanie osadkov v sovremennykh vodoemakh (Formation of Precipitation in Modern Water Bodies), Moscow: Akad. Nauk SSSR, 1954.
  11. Vetrov, V. A., J. Geosci. Environ. Prot., 2018, vol. 6, p. 66.
  12. Leermakers, M., Menleman, C., and Baeyens, W., Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances, Baeyens, W.W., Ebinghaus, and Vasil’ev, R.O., Eds., Dordrecht: Springer, NATO ASI, 1996, ser. 2, vol. 21, p. 303.
  13. Roberts, S.J., Adams, K., Mackay, A.W., Swann, G.E.A., McGowan, S., Rose, N.L., Panizzo, V., Yang, H., Vologina, E., Sturm, M., and Shchetnikov, A.A., Environ. Pollut., 2020, vol. 259, p. 113814.
  14. Baeyens, W., Dehandschutter, B., Leermakers, M., Bobrov, V., Hus, R., and Baeyens-Volant, D., Water Air Soil Pollut., 2003, vol. 142(1), p. 375.
  15. Nguyen, H. L., Leermakers, M., Kurunczi, S., Bozo, L., and Baeyens, W., Sci. Total Environ., 2005, vol. 340, p. 231.
  16. Shreadah, M.A., Ghani, S.A.A., Taha, A.A.S., Ahmed, M.M.A.E., and Hawash, H.B.I., J. Envir. Prot., 2012, vol. 3, p. 254.
  17. Sehee, O., Moon-Kyung, K., Seung-Muk, Y., and Kyung-Duk, Z., Sci. Total Environ., 2010, vol. 408, no. 5, p. 1059.
  18. Lockhart, W.L., Wilkinson, P., Billeck, B.N., Danell, R.A., Hunt, R.V., Brunskill, G.J., Delaronde, J., and Louis, V.St., Biogeochemistry, 1998, vol. 40, p. 163.
  19. Hammerschmidt, C.R., Fitzgerald, W.F., Lamborg, C.H., Balcom, P.H., and Tseng, C.M., Environ. Sci. Technol., 2006, vol. 40, p. 1204.
  20. Bigham, G.N., Murray, K.J., Masue-Slowey, Y., and Henry, E.A., Integr. Environ. Assess. Manag., 2017, vol. 13, p. 249.
  21. Meng, B., Feng, X., Qiu, G., Li, Z., Yao, H., Shang, L., and Yan, H., Environ. Toxicol. Chem., 2016, vol. 35, p. 191.