Examples



mdbootstrap.com



 
Статья
2018

Consolidation by Spark Plasma Sintering of a Ceramic Material Based on Silicon Carbide with Good Physicomechanical Properties, Mechanochemically Activated with Boron


S. Yu. ModinS. Yu. Modin, N. A. PopovaN. A. Popova, Yu. E. LebedevaYu. E. Lebedeva, A. S. ChainikovaA. S. Chainikova, D. O. LemeshevD. O. Lemeshev
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427218020015
Abstract / Full Text

Industrial silicon carbide powder was consolidated with boron by the spark-plasma-sintering (SPS) method. It was shown that a preliminary mechanical activation is a promising method for introduction of high concentrations of boron into silicon carbide. The influence exerted by the boron concentration on the sintering and properties of the material based on silicon carbide was examined. A ceramic based on silicon carbide with 10 wt % amorphous boron was obtained with density of 3.12 g cm–3, hardness of 31.9 GPa, and crack-resistance coefficient of 5.7 MPa m1/2. The ceramic is promising as a construction ceramic for nuclear reactors and gas-turbine engines.

Author information
  • All-Russia Scientific Research Institute of Aviation Materials, pr. Budennogo 25a, Moscow, 105275, RussiaS. Yu. Modin, Yu. E. Lebedeva & A. S. Chainikova
  • Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow, 125047, RussiaS. Yu. Modin, N. A. Popova & D. O. Lemeshev
References
  1. Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., et al., Ros. Khim. Zh., 2010, vol. LIV, no. 1, pp. 20–24.
  2. Sevast’yanov, V.G., Simonenko, E.P., Grashchenkov, D.V., et al., Kompoz. Nanostrukt., 2014, vol. 6, no. 4, pp. 198–211.
  3. Katoh, Y., Snead, L. L., and Henager, C.H., J. Nuclear Mater., 2007, vols. 367–370, pp. 659–671.
  4. Kablov, E.N., Met. Evrazii, 2015, no. 1, pp. 36–39.
  5. Chainikova, A.S., Vaganova, M.L., Shchegoleva, N.E., and Lebedeva, Yu.E., Trudy Vses. Inst. Aviats. Mater.: elektron. nauch.–tekhn. zh., 2015, no. 11, Article 04. URL: http://viam-works.ru/plugins/content/journal/uploads/articles/pdf/884.pdf (assessed on 12.01.2018).
  6. Lebedeva, Yu.E., Popovich, N.V., and Orlova, L.A., Trudy Vses. Inst. Aviats. Mater.: elektron. nauch.–tekhn. zh., 2013, no. 2, Article 06. URL: http://viam-works.ru/plugins/content/journal/uploads/articles/pdf/7.pdf (assessed on 10.01.2018).
  7. Lebedeva, Yu.E., Grashchenkov, D.V., Popovich, N.V., et al., Trudy Vses. Inst. Aviats. Mater.: elektron. nauch.–tekhn. zh., 2013, no. 12, Article 03. URL: http://viamworks. ru/plugins/content/journal/uploads/articles/pdf/630.pdf (assessed on 10.01.2018).
  8. Kablov, E.N., Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 3–33.
  9. Buchilin, N.V. and Lyulyukina, G.Yu., Aviats. Mater. Tekhnol., 2016, no. 4 (45), pp. 40–46.
  10. Sorokin, O.Yu., Aviats. Mater. Tekhnol., 2015, no. 1 (34). pp. 65–70.
  11. Simonenko, E.P., Simonenko, N.P., Sevast’yanov, V.G., et al., Kompoz. Nanostrukt., 2011, no. 4, pp. 52–64.
  12. Malinge, A., Coupe, A., Le Petitcorps, Y., and Pailler, R., J. Eur. Ceram. Soc., 2012, vol. 32, pp. 4393–4400.
  13. Elzbieta, E., Ptak, W., and Stobierski, L., Solid State Ionics, 2001, vols. 141–142, pp. 523–528.
  14. Ray, D.A., Kaur, S., and Cutler, R.A., J. Am. Ceram. Soc., 2008, vol. 91(4), pp. 1135–1140.
  15. Avvakumov, E.G. and Gusev, A.A., Mekhanicheskie metody aktivatsii v pererabotke prirodnogo i tekhnogennogo syr’ya (Mechanical Activation Methods in Processing of Natural and Technogenic Raw Materials), Novosibirsk: Akad. Izd. Geo, 2009.
  16. Barick, P., Chakravarty, D., and Saha, B., Ceram. Int., 2016, vol. 42, pp. 3836–3848.
  17. Torresil’yas San Millan, R., Solis Pinargote, N.V., Okun’kova, A.A., and Peretyagin, P.Yu., Osnovy protsessa iskrovogo plazmennogo spekaniya nanoporoshkov (Basics of the Process of Spark Plasma Sintering of Nanopowders), Moscow: Tekhno sfera, 2014.
  18. Sorokin, O.Yu., Solntsev, S.St., Evdokimov, S.A., and Osin, I.V., Aviats. Mater. Tekhnol., 2014, no. S6, pp. 11–16.
  19. Sevastyanov, V.G., Simonenko, E.P., Gordeev, A.N., et al., Russ. J. Inorg. Chem., 2015, vol. 60, no. 11, pp. 1360–1373.
  20. Sevastyanov, V.G., Simonenko, E.P., Gordeev, A.N., et al., Russ. J. Inorg. Chem., 2014, vol. 59, no. 11, pp. 1298–1311.
  21. Sevastyanov, V.G., Simonenko, E.P., Gordeev, A.N., et al., Russ. J. Inorg. Chem., 2013, vol. 58, no. 11, pp. 1269–1276.
  22. Niihara, K.A., J. Mater. Sci. Lett., 1983, vol. 2, pp. 221–223.
  23. Gu, H., Shinoda, Y., and Wakai, F., J. Am. Ceram. Soc., 1999, vol. 82 (2), pp. 469–472.