Examples



mdbootstrap.com



 
Статья
2021

Reactions of alkali metal diphenylmethanides [(3,5-Bu2t-2-MeO-C6H2)2CH]M (M = Li, K) with LnCl3. The synthesis and structure of the complex [(3,5-Bu2t-2-MeO-C6H2)2CH]2ScCl


D. O. KhristolyubovD. O. Khristolyubov, D. M. LyubovD. M. Lyubov, A. V. CherkasovA. V. Cherkasov, G. K. FukinG. K. Fukin, A. A. TrifonovA. A. Trifonov
Российский химический вестник
https://doi.org/10.1007/s11172-021-3322-0
Abstract / Full Text

The outcome of the exchange reactions of alkali metal diphenylmethanides [(3,5-Bu2t-MeO-C6H2)2CH]M (M = Li (2), K (3)) with LnCl3 is determined by the nature of the rare-earth metal. In the case of ScCl3(THF)3, the reactions (the molar ratio is 2:1) afford the complex [(3,5-Bu2t-2-MeO-C6H2)2CH]2ScCl (4). The reaction of YCl3 with compound 3 is accompanied by the C-O bond cleavage of the diphenylmethanide ligand to form new diphenylmethane (3,5-Bu2t-2-MeO-C6H2)2CHMe (5). For Yb and Sm with a stable divalent state, the exchange reactions of LnCl3 with compound 3 are accompanied by oxidative dimerization of diphenylmethanide carbanions and the elimination of 1,1,2,2-tetraarylethane [(3,5-Bu2t-2-MeO-C6H2)2CH]2 (6). According to the X-ray diffraction data, the diphenylmethanide ligands in compound 4 are bidentate and are coordinated to the Sc3+ ion in a κ2-CO mode.

Author information
  • G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 ul. Tropinina, 603950, Nizhny Novgorod, Russian FederationD. O. Khristolyubov, D. M. Lyubov, A. V. Cherkasov, G. K. Fukin & A. A. Trifonov
  • A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119334, Moscow, Russian FederationA. A. Trifonov
References
  1. A. A. Trifonov, D. M. Lyubov, Coord. Chem. Rev., 2017, 340, 10; DOI: https://doi.org/10.1016/j.ccr.2016.09.013.
  2. M. Nishiura, Z. Hou, Nat. Chem., 2010, 2, 257; DOI: https://doi.org/10.1038/nchem.595.
  3. M. Nishiura, F. Guo, Z. Hou, Acc. Chem. Res., 2015, 48, 2209; DOI: https://doi.org/10.1021/acs.accounts.5b00219.
  4. D. O. Khristolyubov, D. M. Lyubov, A. A. Trifonov, Russ. Chem. Rev., 2021, 90, 529; DOI: https://doi.org/10.1070/RCR4992.
  5. D. M. Lyubov, A. A. Trifonov, Inorg. Chem. Front., 2021, 8, 2965; DOI: https://doi.org/10.1039/D1QI00206F.
  6. A. Sadow, T. Don Tilley, Angew. Chem., Int. Ed., 2003, 42, 803; DOI: https://doi.org/10.1002/anie.200390213.
  7. H. Tsurugi, K. Yamamoto, H. Nagae, H. Kaneko, K. Mashima, Dalton Trans., 2014, 43, 2331; DOI: https://doi.org/10.1039/c3dt52758a.
  8. P. L. Arnold, M. W. McMullon, J. Rieb, F. E. Kühn, Angew. Chem., Int. Ed., 2015, 54, 82; DOI: https://doi.org/10.1002/anie.201404613.
  9. A. N. Selikhov, E. N. Boronin, A. V. Cherkasov, G. K. Fukin, A. S. Shavyrin, A. A. Trifonov, Adv. Synth. Catal., 2020, 362, 5432; DOI: https://doi.org/10.1002/adsc.202000782.
  10. J. Gromada, J.-F. Carpentier, A. Mortreux, Coord. Chem. Rev., 2004, 248, 397; DOI: https://doi.org/10.1016/j.ccr.2004.02.002.
  11. M. Zimmermann, O. N. Friebe, W. Obrecht, Adv. Polym. Sci., 2006, 204, 1; DOI: https://doi.org/10.1007/11761013.
  12. M. Zimmermann, K. W. Törnroos, R. Anwander, Angew. Chem., Int. Ed., 2008, 47, 775; DOI: https://doi.org/10.1002/anie.200703514.
  13. S. Hong, T. J. Marks, Acc. Chem. Res., 2004, 37, 673; DOI: https://doi.org/10.1021/ar040051r.
  14. T. E. Muller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev., 2008, 108, 3795; DOI: https://doi.org/10.1021/cr0306788.
  15. J. Hannedouche, J. Collin, A. Trifonov, E. Schulz, J. Organomet. Chem., 2011, 696, 255; DOI: https://doi.org/10.1016/j.jorganchem.2010.09.013.
  16. A. A. Trifonov, I. V. Basalov, A. A. Kissel, Dalton Trans., 2016, 45, 19172; DOI: https://doi.org/10.1039/c6dt03913h.
  17. D. M. Lyubov, A. S. Shavyrin, Yu. A. Kurskii, A. A. Trifonov, Russ. Chem. Bull., 2010, 59, 1765; DOI: https://doi.org/10.1007/s11172-010-0310-1.
  18. D. S. Levine, T. D. Tilley, R. A. Andersen, Chem. Commun., 2017, 53, 11881; DOI: https://doi.org/10.1039/c7cc06417a.
  19. N. Yu. Rad’kova, T. A. Kovylina, A. V. Cherkasov, K. A. Lyssenko, A. M. Ob’edkov, A. A. Trifonov, Eur. J. Inorg. Chem., 2021, 2390; DOI: https://doi.org/10.1002/ejic.202100250; DOI: https://doi.org/10.1002/ejic.202100250.
  20. W. J. Evans, J. C. Brady, J. W. Ziller, J. Am. Chem. Soc., 2011, 123, 7711; DOI: https://doi.org/10.1021/ja004320u.
  21. L. Lukesova, B. D. Ward, S. Bellemin-Laponnaz, H. Wadepohl, L. H. Gade, Organometallics, 2007, 26, 4652; DOI: https://doi.org/10.1021/om700504f.
  22. A. G. Avent, C. F. Caro, P. B. Hitchcock, M. F. Lappert, Z. Li, X.-H. Wei, Dalton Trans., 2004, 1567; DOI: https://doi.org/10.1039/b316695n.
  23. S. Harder, C. Ruspic, N. N. Bhriain, F. Berkermann, M. Schürmann, Z. Naturforsch., B: Chem. Sci., 2008, 63, 267; DOI: https://doi.org/10.1515/znb-2008-0307.
  24. S. Harder, Organometallics, 2005, 24, 373; DOI: https://doi.org/10.1021/om049327p.
  25. C. Ruspic, J. R. Moss, M. Schürmann, S. Harder, Angew. Chem., Int. Ed., 2008, 47, 2121; DOI: https://doi.org/10.1002/anie.200705001.
  26. Z. Jian, D. Cui, Z. Hou, Chem. Eur. J., 2012, 18, 2674; DOI: https://doi.org/10.1002/chem.201102682.
  27. W. Huang, B. M. Upton, S. I. Khan, P. L. Diaconescu, Organometallics, 2013, 32, 1379; DOI: https://doi.org/10.1021/om3010433.
  28. D. Schuhknecht, K.-N. Truong, T. P. Spaniol, L. Maron, J. Okuda, Chem. Commun., 2018, 54, 11280; DOI: https://doi.org/10.1039/C8CC05152F.
  29. B. M. Wolf, C. Stuhl, R. Anwander, Chem. Commun., 2018, 54, 8826; DOI: https://doi.org/10.1039/c8cc05234d.
  30. A. Fayoumi, D. M. Lyubov, A. O. Tolpygin, A. S. Shavyrin, A. V. Cherkasov, A. M. Ob’edkov, A. A. Trifonov, Eur. J. Inorg. Chem., 2020, 3259; DOI: https://doi.org/10.1002/ejic.202000306.
  31. D. O. Khristolyubov, D. M. Lyubov, A. V. Cherkasov, G. K. Fukin, A. A. Trifonov, Mendeleev Commun., 2021, 31, 54; DOI: https://doi.org/10.1016/j.mencom.2021.01.016.
  32. A. N. Selikhov, G. S. Plankin, A. V. Cherkasov, A. S. Shavyrin, E. Louyriac, L. Maron, A. A. Trifonov, Inorg. Chem., 2019, 58, 5325; DOI: https://doi.org/10.1021/acs.inorgchem.9b00490.
  33. A. N. Selikhov, A. S. Shavyrin, A. V. Cherkasov, G. K. Fukin, A. A. Trifonov, Organometallics, 2019, 38, 4615; DOI: https://doi.org/10.1021/acs.organomet.9b00624.
  34. D. O. Khristolyubov, D. M. Lyubov, A. S. Shavyrin, A. V. Cherkasov, G. K. Fukin, A. A. Trifonov, Inorg. Chem. Front., 2020, 7, 2459; DOI: https://doi.org/10.1039/d0qi00369g.
  35. A. N. Selikhov, A. V. Cherkasov, Y. V. Nelyubina, A. A. Trifonov, Mendeleev Commun., 2021, 31, 334; DOI: https://doi.org/10.1016/j.mencom.2021.04.017.
  36. T. Shin, H. Kim, S. Kim, A. Lee, M.-S. Seo, J. Choi, H. Kim, H. Kim, Org. Lett., 2019, 21, 5789; DOI: https://doi.org/10.1021/acs.orglett.9b01639.
  37. D. O. Khristolyubov, D. M. Lyubov, A. V. Cherkasov, G. K. Fukin, A. S. Shavyrin, A. A. Trifonov, Organometallics, 2018, 37, 1627; DOI: https://doi.org/10.1021/acs.organomet.8b00182.
  38. N. Meyer, P. W. Roesky, S. Bambirra, A. Meetsma, B. Hessen, K. Saliu, J. Takats, Organometallics, 2008, 27, 1501; DOI: https://doi.org/10.1021/om701171y.
  39. X. Li, M. Nishiura, K. Mori, T. Mashiko, Z. Hou, Chem. Commun., 2007, 4137; DOI: https://doi.org/10.1039/b708534f.
  40. K. R. D. Johnson, P. G. Hayes, Polyhedron, 2016, 108, 43; DOI: https://doi.org/10.1016/j.poly.2015.07.078.
  41. H. Schumann, D. M. M. Freckmann, S. Dechert, Organometallics, 2006, 25, 2696; DOI: https://doi.org/10.1021/om0601201.
  42. R. D. Shannon, Acta Cryst., 1976, A32, 751; DOI: https://doi.org/10.1107/S0567739476001551.
  43. L. R. Morss, Chem. Rev., 1976, 76, 827; DOI: https://doi.org/10.1021/cr60304a007.
  44. B. Liu, X. Liu, D. Cui, L. Liu, Organometallics, 2009, 28, 1453; DOI: https://doi.org/10.1021/om801004r.
  45. A. A. Trifonov, T. P. Spaniol, J. Okuda, Dalton Trans., 2004, 2245; DOI: https://doi.org/10.1039/b406071g.
  46. A. A. Kissel, D. M. Lyubov, T. V. Mahrova, G. K. Fukin, A. V. Cherkasov, T. A. Glukhova, D. Cui, A. A. Trifonov, Dalton Trans., 2013, 42, 9211; DOI: https://doi.org/10.1039/c3dt33108c.
  47. A. O. Tolpygin, A. S. Shavyrin, A. V. Cherkasov, G. K. Fukin, A. A. Trifonov, Organometallics, 2012, 31, 5405; DOI: https://doi.org/10.1021/om3004306.
  48. A. A. Kissel, T. V. Mahrova, D. M. Lyubov, A. V. Cherkasov, G. K. Fukin, A. A. Trifonov, I. Del Rosal, L. Maron, Dalton Trans., 2015, 44, 12137; DOI: https://doi.org/10.1039/c5dt00129c.
  49. W. Jiang, L.-J. Zhang, L.-X. Zhang, Eur. J. Inorg. Chem., 2020, 2153; DOI: https://doi.org/10.1002/ejic.202000148.
  50. A. Zinnen, J. J. Pluth, W. J. Evans, J. Chem. Soc., Chem. Commun., 1980, 810; DOI: https://doi.org/10.1039/C39800000810.
  51. A. J. Wooles, D. P. Mills, W. Lewis, A. J. Blake, S. T. Liddle, Dalton Trans., 2010, 39, 500; DOI: https://doi.org/10.1039/b911717b.
  52. J. Cheng, K. Saliu, M. J. Ferguson, R. McDonald, J. Takats, J. Organomet. Chem., 2010, 695, 2696; DOI: https://doi.org/10.1016/j.jorganchem.2010.08.020.
  53. I. V. Basalov, D. M. Lyubov, G. K. Fukin, A. V. Cherkasov, A. A. Trifonov, Organometallics, 2013, 32, 1507; DOI: https://doi.org/10.1021/om400015k.
  54. E. Sheng, S. Zhou, S. Wang, G. Yang, Y. Wu, Y. Feng, L. Mao, Z. Huang, Eur. J. Inorg. Chem., 2004, 2923; DOI: https://doi.org/10.1002/ejic.200400077.
  55. S. J. Lyle, M. M. Rahman, Talanta, 1953, 10, 1177. DOI: https://doi.org/10.1016/0039-9140(63)80170-8.
  56. Bruker. APEX3, Bruker AXS Inc., Madison, Wisconsin, USA, 2018.
  57. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.
  58. G. M. Sheldrick, Acta Cryst., 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.