Improved Effect of Water-Soluble Binder NV-1A on the Electrochemical Proprieties LFP Electrodes

O. PotapenkoO. Potapenko, A. PotapenkoA. Potapenko, Changji ZhouChangji Zhou, Lili ZhangLili Zhang, Jun XuJun Xu, Zhuowei GuZhuowei Gu
Российский электрохимический журнал
Abstract / Full Text

The electrochemical properties of batteries consist of LiFePO4 (LFP) with the NV-1A binder were studied in depth. It was shown that SEI layer for NV-1A formed on the electrodes has a lower resistance as compared with PVDF. It is known that the increase discharge current loads lead to decrease an average voltage and the specific capacity of a battery. However, in the case of NV-1A binder the changing average discharge voltage and the specific capacity at the increasing current loads is not significant. Thus, the capacity fall is 18 and 220 mA h for NV-1A and PVDF binders for LIBs consist from LFP cathode material with different binders with an increase in discharge currents from 0.1 to 2.0 C, respectively. It should be noticed that the electrochemical properties of the LFP–NV-1A system were completely studied the first time not only in half-cells but in the full battery complete state.

Author information
  • Ningbo FUTEC Co. Ltd., 315600, Ningbo, P.R. ChinaO. Potapenko
  • Zhejiang Casnovo New Materials Co. Ltd., 316100, Zhoushan, Zhejiang, P.R. ChinaO. Potapenko, Changji Zhou, Lili Zhang, Jun Xu & Zhuowei Gu
  • On leave of absence from Joint Department of Electrochemical Energy Systems, 03142, Kyiv, UkraineO. Potapenko & A. Potapenko
  • University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, ChinaA. Potapenko
  1. Chou, S.-L., Pan, Y., Wang, J.-Z., Liu, H.-K., and Dou, S.-X., Small things make big difference: binder effects on the performance of Li and Na batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 20347.
  2. Li, J.-T., Wu, Z.-Y., Lu, Y.-Q., and Zhou, Y., Water soluble binder, an electrochemical performance booster for electrode materials with high energy density, Adv. Energy Mater., 2017 vol. 1, p. 1701185.
  3. Lux, S.F., Schappacher, F., Balducci, A., Passerini, S., and Winter, M., Low cost, environmentally benign binders for lithium-ion batteries, J. Electrochem. Soc., 2010, vol. 157, no. 3, p. A320.
  4. Porcher, W., Lestriez, B., Jouanneau, S., and Guyomard, D., Design of aqueous processed thick LiFePO4 composite electrodes for high-energy lithium battery, J. Electrochem. Soc., 2009, vol. 156, no. 3, p. A133.
  5. Porcher, W., Moreau, P., Lestriez, B., Jouanneau, S., and Guyomard, D., Is LiFePO4 stable in water?: toward greener Li-ion batteries, Electrochem. Solid-State Lett., 2008, vol. 11, no. 1, p. A4.
  6. Qiu, L., Shao, Z., Wang, W., Wang, F., et al., Novel functional material carboxymethyl cellulose lithium (CMC-Li) enhanced performance of lithium-ion batteries, RSC Adv., 2014, no. 47, p. 1.
  7. Zhang, Z., Zeng, T., Qu, Ch., et al., Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder, Electrochim. Acta, 2012, vol. 80, p. 440.
  8. Zhang, Z., Zeng, T., Lu, H., Jia, M., et al., Enhanced high-temperature performances of LiFePO4 cathode with polyacrylic acid as binder, ECS Electrochem. Lett., 2012, vol. 1, no. 5, p. A74.
  9. Cai, Z.P., Liang, Y., Li, W.-S., et al., Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder, J. Power Soc., 2009, vol. 189, p. 547.
  10. Chonga, J., Xuna, S., Zhenga, H., Songa, X., Liua, G., et al., A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells, J. Power Soc., 2011, vol. 196, p. 7707.
  11. Yuca, N., Zhao, H., Song, X., Dogdu, M.F., Yuan, W., Fu, Y., Battaglia, V.S., Xiao, X., and Liu, G., A systematic investigation of polymer binder flexibility on the electrode performance for lithium-ion batteries, J. ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 17111.
  12. Aoki, S., Han, Z.-J., Yamagiwa, K., Yabuuchiat, N., et al., Acrylic acid-based copolymers as functional binder for silicon/graphite composite electrode in lithium-ion batteries, J. Electrochem. Soc., 2015, vol. 162, p. A2245.
  13. Crosby, A.J., Hageman, M., and Duncan, A., Controlling polymer adhesion with “Pancakes,” Langmuir, 2005, vol. 21, p. 11738.
  14. Zhong, H., Sun, M., Li, Y., He, J., Yang, J., and Zhang, L., The polyacrylic latex: an efficient water-soluble binder for LiNi1/3Co1/3Mn1/3O2 cathode in li-ion batteries, J. Solid State Electrochem., 2016, vol. 20, p. 1.
  15. Chen, L., Xie, X., Xie, J., Wang, K., and Yang, J., Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries, J. Appl. Electrochem., 2006, vol. 36, p. 1099.
  16. Wang, G., Xu, J., Wen, M., Cai, R., Ran, R., and Shao, Z., Influence of high-energy ball milling of precursor on the morphology and electrochemical performance of Li4Ti5O12–ball-milling time, Solid State Ionics, 2008, vol. 179, p. 946.
  17. McNeill, I.C. and Sadeghi, S.M.T., Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts: part 1 poly(acrylic acid), Polym. Degrad. Stab., 1990, vol. 29, p. 233.
  18. Gaberscek, M., Moskon, J., Erjavec, B., Dominko, R., and Jamnik, J., The importance of interphase contacts in Li ion electrodes: the meaning of the high frequency impedance arc, Electrochem. Solid-State Lett., 2008, vol. 11, no. 10, p. A170.
  19. Schmidt, J.P., Chrobak, T., Ender, M., Illig, J., Klotz, D., et al., Studies on LiFePO4 as cathode material using impedance spectroscopy, J. Power Soc., 2011, vol. 196, p. 5342.
  20. Zhanga, Z., Zenga, T., Qua, C., Lu, H., Jia, M., Lai, Y., and Li, J., Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder, Electrochim. Acta, 2012, vol. 80, p. 440.
  21. Rohan, R., Kuo, T.-C., Lin, J.-H., Hsu, Y.-C., Li, C.-C., and Lee, J.-T., Dinitrile-mononitrile-based electrolyte system for lithium-ion battery application with the mechanism of reductive decomposition of mononitriles, J. Phys. Chem. C, 2016, vol. 120, p. 6450.
  22. Kim, Y.-S., Lee, H., and Song, H.-K., Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 8913.