Examples



mdbootstrap.com



 
Статья
2019

High-Energy Ion Treatment of Lavsan Films Followed by Controlled Track Etching to Obtain Asymmetric Gas-Separation Membranes


D. A. SyrtsovaD. A. Syrtsova, V. V. TeplyakovV. V. Teplyakov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427219010021X
Abstract / Full Text

The structure and gas transport properties of polymer membranes prepared from commercial Lavsan™ (polyethylene terephthalate based material) films by irradiation of the polymer films with Ar ions, followed by etching in an NaOH solution, were studied. Analysis of the polymer structure by differential scanning calorimetry showed that irradiation of the Lavsan™ matrix with Ar ions (energy 2.4 MeV nucleon−1, fluence 6 × 107 cm−2) led to a 20–30% decrease in the degree of crystallinity. The permeability of the new membranes to He, H2, O2, Ar, N2, CH4, CO2, and H2/CH4 mixture was evaluated. UV sensitization allows a fourfold increase in the permeability of the Lavsan™-based films to the gases tested relative to the films etched without preliminary UV irradiation. The composition of the H2/CH4 gas mixture does not influence the separating properties of the membranes, and the mixture separation factor coincides with the ideal value of the gas selectivity.

Author information
  • Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991, RussiaD. A. Syrtsova & V. V. Teplyakov
References
  1. Tahir, Z., Ilyas, A., Li, X., Bilad, M.R., Vankelecom, I.F.J., and Khan, A.L., J. Appl. Polym. Sci., 2018, vol. 135, pp. 45952–45960.
  2. Mashentseva, A.A. and Zdorovets, M.V., Petrol. Chem., 2017, vol. 57, no. 11, pp. 954–960.
  3. Dzyazko, Y.S., Rozhdestvenskaya, L.M., Zmievskii, Yu.G., Vilenskii, A.I., Myronchuk, V., Kornienko, L.V., Vasilyuk, S.V., and Tsyba, N.N., Nanoscale Res. Lett., 2015, vol. 10, p. 64.
  4. Yuan, H., Yu, B., Cong, H., Peng, Q., Yang, R., Yang, S., Yang, Z., Luo, Y., Xu, T., Zhang, H., and Li, Z., Rev. Adv. Mater. Sci., 2016, vol. 44, pp. 207–220.
  5. Banerjee, S., Handbook of Specialty Fluorinated Polymers: Preparation, Properties, and Application, Elsevier, 2015.
  6. Michaels, A.S., Vieth, W.R., and Barrie, J.A., J. Appl. Phys., 1963, vol. 34, pp. 13–18.
  7. Berezkin, V.V., Nechaev, A.N., Fomichev, S.V., Mchedlishvili, B.V., and Zhitaryuk, N.I., Kolloidn. Zh., 1991, vol. 53, no. 2, pp. 339–342.
  8. Syrtsova, D.A., Teplyakov, V.V., Kochnev, Yu.K., Nechaev, A.N., Apel, P.Yu., Adeniyi, O.R., and Petrik, L., Petrol. Chem., 2016, vol. 56, no. 4, pp. 294–302.
  9. Price, P.B. and Walker, R.M., J. Appl. Phys., 1962, vol. 33, no. 3, pp. 407–412.
  10. Patent US 20060000798 A1, Publ. 2006.
  11. Vilenskii, A.I. and Tolstikhina, A.L., Izv. Ross. Akad. Nauk, Ser. Khim., 1999, no. 6, p. 1111.
  12. Rabek, J.F., Experimental Methods in Polymer Chemistry: Physical Principles and Application, New York: Wiley, 1980.
  13. Apel, P., Radiat. Meas., 2001, vol. 34, pp. 559–566.
  14. Cherkasov, A.N., Membr. Membr. Tekhnol., 2002, vol. 14, pp. 3–17.
  15. Cornelius, T.W., Apel, P.Yu., Schiedt, B., Trautmann, C., Toimil-Molares, M.E., Karim, S., and Neumann, R., Nucl. Instr. Meth. Phys. Res. B: Beam Interact. Mater. At., 2007, vol. 265, pp. 553–557.
  16. Friebe, A. and Ulbricht, M., Langmuir, 2007, vol. 23, pp. 10316–10322.
  17. Shataeva, L.K., Ryadnova, I.Yu., Nechaev, A.N., Sergeev, A.V., Chikhacheva, I.P., and Mchedlishvili, B.V., Colloid J., 2000, vol. 62, no. 1, pp. 113–118.
  18. Nechaev, A.N., Berezkin, V.V., Vilenskii, A.I., Zhdanov, G.S., Karpukhina, L.G., Kudoyarov, M.F., Miterev, A.M., Mitrofanova, N.V., Pronin, V.A., Tsyganova, T.V., and Mchedlishvili, B.V., Ser. Krit. Tekhnol. Membr., 2000, no. 6, pp. 17–25.
  19. Shtanko, N.I., Kabanov, V.Ya., Apel, P.Yu., Yoshida, M., and Vilenskii, A.I., J. Membrane Sci., 2000, vol. 179, pp. 155–161.
  20. Kravets, L.I., Dmitriev, S.N., Sleptsov, V.V., Elinson, V.M., Potryasai, V.V., and Orelovich, O.L., High Energy Chem., 2000, vol. 34, no. 2, pp. 116–121.
  21. Gamerith, C., Gajda, M., Ortner, A., Acero, E.H., Guebitz, G.M., and Ulbricht, M., Biotechnology, 2017, vol. 25, no. 39, part A, pp. 42–50.
  22. Apel, P.Yu. and Ovchinnikov, V.V., Radiat. Eff. Def. Solids, 1993, vol. 126, pp. 217–220.
  23. Kuznetsov, V.I., Kuznetsov, L.V., and Shestakov, V.D., Radiat. Meas., 1995, vol. 25, nos. 1–4, pp. 735–738.
  24. Kaniukov, E.Yu., Shumskaya, E., Yakimchuk, D.V., Kozlovskiy, A.L., Ibragimova, M.A.M., and Zdorovets, V., J. Contemp. Phys. (Armen. Acad. Sci.), 2017, vol. 52, no. 2, pp. 155–160.
  25. Kuznetsov, V.I., Didyk, A.Yu., and Apel, P.Yu., Nucl. Track Radiat. Meas., 1991, vol. 19, no. 1–4, pp. 919–924.
  26. Kravets, L.I., Dmitriev, S.N., and Apel, P.Yu., Radiat. Meas., 1995, vol. 25, nos. 1–4, pp. 729–732.
  27. Molokanova, L.G., Kochnev, Yu.K., Nechaev, A.N., Chukova, S.N., and Apel, P.Yu., High Energy Chem., 2017, vol. 51, no. 3, pp. 182–188.
  28. Belkova, A.A., Sergeeva, A.I., Apel, P.Y., and Beklemishev, M.K., J. Membr. Sci., 2009, vol. 330, nos. 1–2, pp. 145–155.
  29. Agarwal, C. and Kalsi, P.C., Radiat. Phys. Chem., 2010, vol. 79, no. 8, pp. 844–847.
  30. Vilensky, A.I., Zagorski, D.L., Kabanov, V.Y., and Mchedlishvili, B.V., Radiat. Meas., 2003, vol. 36, nos. 1–6, pp. 131–135.
  31. Calcagno, L., Compagnini, G., and Foti, G., Nucl. Instr. Meth. Phys. Res. B: Beam Interact. Mater. At., 1992, vol. 65, nos. 1–4, pp. 413–422.
  32. Kudo, H., Sudo, S., Oka, T., Hama, Y., Oshima, A., Washio, M., and Murakami, T., Radiat. Phys. Chem., 2009, vol. 78, no. 12, pp. 1067–1070.
  33. Biswas, A., Lotha, S., Fink, D., Singh, J.P., Avasthi, D.K., Yadav, B.K., Bose, S.K., Khating, D.T., and Avasthi, A.M., Nucl. Instr. Meth. Phys. Res. B: Beam Interact. Mater. At., 1999, vol. 159, pp. 40–51.
  34. Efmova, E.A., Syrtsova, D.A., and Teplyakov, V.V., Sep. Purif. Technol., 2017, vol. 179, pp. 467–474.
  35. Groeninckx, G., Berghmans, H., Overbergh, N., and Smets, G., J. Polym. Sci. B: Polym. Phys, 1974, vol. 12, pp. 303–316.
  36. Alves, N., Mano João, F., Balaguer, E., Dueñas, Jm., and Gómez Ribelles, J.L., Polymer, 2002, vol. 43, pp. 4111–4122.
  37. Wunderlich, B., Macromolecular Physics, New York: Academic, 1980, vol. 3.
  38. Michaels, A.S., Vieth, W.R., and Barrie, J.A., J. Appl. Phys., 1963, vol. 34, pp. 13–16.
  39. Kondyurin, A. and Bilek, M., Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space, Elsevier, 2015.
  40. Zhu, Z., Liu, C., Sun, Y., Liu, J., Tang, Y., Jin, Y., and Du, J., Nucl. Instr. Meth. Phys. Res. B: Beam Interact. Mater. At., 2002, vol. 191, nos. 1–4, pp. 723–727.