Examples



mdbootstrap.com



 
Статья
2020

Physical and Mechanical Properties of Cuw20 Composites Synthesized by Explosive Compaction of Bimetallic Nanoparticles


A. P. KhrustalevA. P. Khrustalev, A. V. PervikovA. V. Pervikov, A. V. ChumaevskiiA. V. Chumaevskii, K. V. SulizK. V. Suliz, A. B. VorozhtsovA. B. Vorozhtsov, M. I. LernerM. I. Lerner
Российский физический журнал
https://doi.org/10.1007/s11182-020-01912-z
Abstract / Full Text

The paper considers the physical and mechanical properties of bimetallic tungsten-copper powders after explosive compaction. This method is used to produce rather dense powder compacts from tungsten-copper nanoparticles. The structural analysis and the analysis of physical and mechanical properties of the obtained composites show that the pressure reduction and an increase in the time of explosive compaction considerably improve the composite hardness and mechanical properties.

Author information
  • Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaA. P. Khrustalev, A. V. Pervikov, A. V. Chumaevskii, K. V. Suliz, A. B. Vorozhtsov & M. I. Lerner
  • National Research Tomsk State University, Tomsk, RussiaA. P. Khrustalev, A. B. Vorozhtsov & M. I. Lerner
  • National Research Tomsk Polytechnic University, Tomsk, RussiaK. V. Suliz
References
  1. W. T. Qiu, Y. Pang, Z. Xiao, and Z. Li, Int. J. Refract. Metals Hard Mater., 61, 91–97 (2016).
  2. A. Elsayed, W. Li, O. A. El Kady, et al., J. Alloy. Comp., 639, 373–380 (2015).
  3. Q. Zhang, S. Liang, B. Hou, and L. Zhuo, Int. J. Refract. Metals Hard Mater., 59, 87–92 (2016).
  4. X. Wei, J. Tang, N. Ye, and H. Zhuo, J. Alloy. Comp., 661, 471–475 (2016).
  5. S. Luo, J. Yi, Y. Guo, et al., J. Alloy. Comp., 473, 5–9 (2009).
  6. Y. Hiraoka, T. Inoue, H. Hanado, et al., Metall. Mater. Trans., 46, No. 7, 1663–1670 (2005).
  7. A. Ibrahim, M. Abdallah, S. F. Mostafa, et al., Mater. Design, 30, 1398–1403 (2009).
  8. A. P. Khrustalev, A. V. Pervikov, M. I. Lerner, et al., Russ. Phys. J., 61, No. 5, 949–954 (2018).
  9. A. P. Khrustalev, A. V. Pervikov, M. I. Lerner, et al., Russ. Phys. J., 61, No. 11, 2142–2143 (2018).
  10. A. A. Deribas, P. A. Simonov, V. N. Filimonenko, and A. A. Shtertser, Combust. Explo. Shock, 36, No. 6, 758–770 (2000).
  11. M. I. Lerner, A. V. Pervikov, E. A. Glazkova, et al., Powder Technol., 288, 371–378 (2016).
  12. A. Pervikov, E. Glazkova, and M. Lerner, Phys. Plasmas, 25, 070701 (2018).
  13. S. A. Vorozhtsov, O. B. Kudryashova, M. I. Lerner, et al., Russ. Phys. J., 60, No. 7, 1248–1254 (2017).
  14. A. Walther and A. H. E. Müller, Chem. Rev., 113, 75194–5261 (2013).
  15. M. Ya. Gen, E. A. Velichenkova, I. V. Eremina, and M. S. Ziskin, Fiz. Tverd. Tela, 6, No. 6, 1622–1626 (1964).
  16. Yu. A. Kotov, Nanotechnologies in Russia, 4, No. 1–2, 40–51 (2009).
  17. W. M. Daoush, B. K. Lim, C. B. Mo, et al., Mat. Sci. Eng. A-Struct., 513, 247–253 (2009).