Examples



mdbootstrap.com



 
Статья
2022

Synthesis of 5-Arylisoxazole and 4,5-Dichloroisothiazole Amino-Substituted Derivatives and Their Biological Activity


I. A. KolesnikI. A. Kolesnik, S. K. PetkevichS. K. Petkevich, D. F. MertsalovD. F. Mertsalov, L. V. ChervyakovaL. V. Chervyakova, M. A. NadirovaM. A. Nadirova, A. P. TyurinA. P. Tyurin, A. Y. GuanA. Y. Guan, C. L. LiuC. L. Liu, V. I. PotkinV. I. Potkin
Российский журнал общей химии
https://doi.org/10.1134/S1070363222010066
Abstract / Full Text

A series of amino derivatives of 5-arylisoxazoles and 4,5-dichloroisothiazole with primary and secondary amino groups was synthesized. 3-Aminomethyl-5-arylisoxazol-3-ylmethanamines were obtained on the basis of 5-aryl-3-(chloromethyl)isoxazoles using the Gabriel phthalimide method. 5-Arylisoxazol-3-yl- and 4,5-dichloroisothiazol-3-ylallylamines were synthesized in two ways: reduction of azomethines obtained by condensation of 5-arylisoxazolyl- and 4,5-dichloroisothiazolyl-3-carbaldehydes with allylamine, and by nucleophilic substitution of the chlorine atom in 3-chloromethyl derivatives of the corresponding azoles by reaction with allylamine. Amides and sulfonamides of azolylallylamines were synthesized. Some of the compounds obtained showed antibacterial and fungicidal activity.

Author information
  • Institute of Physical and Organic Chemistry of the National Academy of Sciences of Belarus, 220072, Minsk, BelarusI. A. Kolesnik, S. K. Petkevich & V. I. Potkin
  • Peoples’ Friendship University of Russia, 117198, Moscow, RussiaD. F. Mertsalov, L. V. Chervyakova & M. A. Nadirova
  • Gause Institute of New Antibiotics, 119021, Moscow, RussiaA. P. Tyurin
  • State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co. Ltd, 110021, Shenyang, ChinaA. Y. Guan & C. L. Liu
References
  1. Akritopoulou-Zanze, S.W. and Djuri, C., Top. Het. Chem., 2010, vol. 25, p. 231. https://doi.org/10.1007/7081_2010_4
  2. Agrawal, N. and Mishra, P., Med. Chem. Res., 2018, vol. 27, p. 1309. https://doi.org/10.1007/s00044-018-2152-6
  3. Alam, M.A., Shimada, K., Khan, M.W., and Hossain, M.D., Med. Anal. Chem. Int. J., 2019, vol. 3, p. 1. https://doi.org/10.23880/macij-16000137
  4. Kletskov, A.V., Potkin, V.I., Kolesnik, I.A., Petkevich, S.K., Kvachonak, A.V., Dosina, M.O., Loiko, D.O., Larchenko, M.V., Pashkevich, S.G., and Kulchitsky, V.A., Nat. Prod. Commun., 2018, vol. 13, p. 1507. https://doi.org/10.1177/1934578X1801301124
  5. Kumar, D. and Jain, S.K., Curr. Med. Chem., 2016, vol. 23, p. 4338. https://doi.org/10.2174/0929867323666160809093930
  6. Kislyi, V.P., Danilova, E.B., and Semenov, V.V., Adv. Het. Chem., 2007, vol. 94, p. 173. https://doi.org/10.1016/S0065-2725(06)94003-3
  7. Swiatek, P. and Malinka, W., Acta Pol. Pharm., 2004, vol. 61, p. 98. PMID: 15909955.
  8. Bärfacker, L., Siemeister, G., Heinrich, T., Prechtl, S., Stöckigt, D., and Rottmann, A., Pat. WO 2015113920, 2015.
  9. Lemieux, R.U. and Raap, R., Pat. Japan, 52031345, 1977.
  10. Machon, Z. and Kuczynski, L., Pat. Poland 70257, 1974.
  11. Burow, K.W., Jr., Pat. EP 129408 (1984).
  12. Davis, R.H. and Krummel, G., Pat. EP 623282, 1994.
  13. Lehr, S., Bernier, D., Droege, T., Mosrin, M., Rey, J., and Tiebes, J., Abstracts of 256th ACS Nat. Meet. & Expos., Boston, 2018.
  14. Gewald, K. and Bellmann, P., Lieb. Ann. Chem., 1979, vol. 10, p. 1534. https://doi.org/10.1002/chin.198006252
  15. Boeshagen, H. and Geiger, W., Lieb. Ann. Chem., 1977, vol. 1, p. 20. https://doi.org/10.1002/chin.197717197
  16. Goerdeler, J. and Pohland, H.W., Angew. Chem., 1960, vol. 72, p. 77. https://doi.org/10.1002/ange.19600720208
  17. Shao, D. and Huang, C., Pat. CN 103242256, 2013.
  18. Wang, Z., Pat. CN 110713467, 2020.
  19. Potkin, V.I., Petkevich, S.K., Kletskov, A.V., Dikusar, E.A., Zubenko, Yu.S., Zhukovskaya, N.A., Kazbanov, V.V., and Pashkevich, S.G., Russ. J. Org. Chem., 2013, vol. 49, no. 10, p. 1523. https://doi.org/10.1134/S1070428013100205
  20. Potkin, V.I., Bumagin, N.A., Petkevich, S.K., Dikusar, E.A., Semenova, E.V., Kurman, P.V., Zolotar’, R.M., Pashkevich, S.G., Gurinovich, T.A., and Kul’chitskii, V.A., Russ. J. Org. Chem., 2015, vol. 51, no. 8, p. 1119. https://doi.org/10.1134/S1070428015080102
  21. Kletskov, A.V., Potkin, V.I., Dikusar, E.A., and Zolotar’, R.M., Nat. Prod. Compd., 2017, vol. 12, p. 105. https://doi.org/10.1177/1934578X1701200130
  22. Potkin, V.I., Dikusar, E.A., and Petkevich, S.K., Doklady Nats. Akad. Belarusi, 2008, no. 52, p. 60.
  23. Bumagin, N.A., Zelenkovskii, V.M., Kletskov, A.V., Petkevich, S.K., Dikusar, E.A., and Potkin, V.I., Russ. J. Gen. Chem., 2016, vol. 86, no. 1, p. 68. https://doi.org/10.1134/S1070363216010138
  24. Yadav, K. and Yadav, L.D.S., RSC Adv., 2014, vol. 4, p. 34764. https://doi.org/10.1039/C6RA02365G
  25. Bousfield, T.W., Pearce, K.P.R., Nyamini, S.B., Angelis-Dimakis, A., and Camp, J.E., Green Chem., 2019, vol. 21, p. 3675. https://doi.org/10.1039/c9gc01180c
  26. Sköld, O., Drug Resistance Updates, 2000, vol. 3, p. 155. https://doi.org/10.1054/drup.2000.0146
  27. Nechai, N.I., Dikusar, E.A., Potkin, V.I., and Kaberdin, R.V., Russ. J. Org. Chem., 2004, vol. 40, no. 7, p. 1009. https://doi.org/10.1023/B:RUJO.0000045195.47004.a9
  28. Potkin, V.I., Gadzhily, R.A., Dikusar, E.A., Petkevich, S.K., Zhukovskaya, N.A., Aliev, A.G., and Nagieva, Sh.F., Russ. J. Org. Chem., 2012, vol. 48, p. 127. https://doi.org/10.1134/S1070428012010216
  29. Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Disc Susceptibility Tests. CLSI Document M02-A12, CLSI, Wayne, PA, 2015.
  30. Yang, J., Guan, A., Li, Z., Zhang, P., and Liu, C., J. Agric. Food Chem., 2020, vol. 68, p. 6485. https://doi.org/10.1021/acs.jafc.9b07055
  31. Steyermark, A., Quantitative Organic Microanalysis, New York: Academic Press, 1961.