Examples



mdbootstrap.com



 
Статья
2021

Optimization of Fe2O3–CeO2 Nanocomposite As an Efficient Catalyst for the Synthesis of 2,4,5-Triarylimidazoles


Iqra IlyasIqra Ilyas, Ifra BashirIfra Bashir, Muhammad Akhyar FarrukhMuhammad Akhyar Farrukh
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421050150
Abstract / Full Text

The co-precipitation method was used to synthesize the Fe2O3–CeO2 nanocomposite in the presence of sodium dodecyl sulphate (SDS). The effect of pH and temperature on the properties of nanocomposite was studied to optimize the reaction condition. The synthesized nanocomposite was characterized by using different analytical techniques including FTIR, XRD, SEM-EDX, and TGA. The results showed that increase in temperature and decrease in pH allow to reduce the particle size. The catalytic efficiency of synthesized nanocomposite was studied by using it as a catalyst for one pot synthesis of 2,4,5-triarylimidazole, which is simple, efficient and cost-effective method. The results showed that Fe2O3–CeO2 nanocomposite synthesized at higher temperature was more efficient catalyst due to having small particle size, while 2,4,5-triarylimidazole was analyzed by TLC, elemental analysis and GCMS.

Author information
  • Nano-Chemistry Laboratory, Government College University Lahore, 54000, Lahore, PakistanIqra Ilyas & Ifra Bashir
  • Department of Chemistry, Forman Christian College (A Chartered University), 54600, Lahore, PakistanMuhammad Akhyar Farrukh
References
  1. Y. Tamirat, J. Mater. Sci. Nanotechnol. 5, 202 (2017).
  2. M. C. Senut, Y. Zhang, F. Liu, et al., Small 5, 631 (2016).
  3. J. T. Verkey, Orient. J. Chem. 33, 1035 (2017).
  4. N. V. Suramwar, S. R. Thakare, and N. T. Khaty, Int. J. Knowledge Eng. 3, 98 (2012).
  5. G. Sharma, A. Kumar, S. Sharma, et al., J. King Saud Univ.-Sci. 31, 257 (2017).
  6. M. A. Farrukh, K. M. Butt, K. K. Chong, and W. S. Chang, J. Saudi Chem. Soc. 23, 561 (2019).
  7. D. Cardillo, M. Weiss, M. Tehei, et al., RSC Adv. 6, 65397 (2016).
  8. A. Imtiaz and M. A. Farrukh, J. Mater. Sci. Mater. Electron. 28, 2788 (2017).
  9. S. Rajeshkumar and P. Naik, Biotechnol. Rep. 17, 1 (2018).
  10. A. Walther and A. Jacobi von Wangelin, Curr. Org. Chem. 17, 326 (2013).
  11. H. M. Gobara, W. A. Aboutaleb, K. M. Hashem, et al., J. Mater. Sci. 52, 550 (2016).
  12. D. K. Bora and P. Deb, Nanoscale Res. Lett. 4, 138 (2009).
  13. Q. Lui, Z. M. Cui, S. W. Bian, W. G. Song, and L. J. Wan, Nanotechnology 18, 38605 (2007).
  14. A. A. Marzouk, V. M. Abbasov, A. H. Talybov, and S. K. Mohamed, World J. Org. Chem. 1, 6 (2013).
  15. G. M. Ziarani, A. Badiei, N. Lashgari, and Z. Farahani, J. Saudi Chem. Soc. 20, 419 (2016).
  16. R. Rajkumar, A. Kamaraj, and K. Krishnasamy, J. Taibah Univ. Sci. 9, 498 (2015).
  17. J. W. Black, G. J. Durant, J. C. Emmett, and C. R. Ganellin, Nature (London, U. K.) 248, 65 (1971).
  18. M. Misono, Chem. Commun. 13, 1141 (2001).
  19. Ü. Uçucu, N. G. Karaburun, and I. Işikdağ, Il Farmaco 56, 285 (2001).
  20. S. D. Sharma, P. Hazarika, and D. Konwar, Tetrahedron Lett. 49, 2216 (2008).
  21. H. Brahmbhatt, M. Molnar, and V. Pavic, Karbala Int. J. Mod. Sci. 4, 200 (2018).
  22. B. F. Mirjalili, A. H. Bamoniri, and L. Zamani, Sci. Iran. 19, 565 (2012).
  23. K. Nikoofar, M. Haghighi, M. Lashanizadegan, and Z. Ahmadvand, J. Taibah Univ. Sci. 9, 570 (2015).
  24. P. Bon, I. Zhitomirsky, and J. D. Embury, Mater. Chem. Phys. 86, 44 (2004).
  25. R. Tayebee and M. A. Ghadamgahi, Am. J. Org. Chem. 2, 25 (2012).
  26. L. J. Bellamy and R. L. Williams, Spectrochim. Acta 9, 341 (1957).
  27. L. Chuntonov, R. Kumar, and D. G. Kuroda, Phys. Chem. Chem. Phys. 16, 13172 (2014).
  28. T. Bezrodna, G. Puchkovska, V. Shymanovska, et al., J. Mol. Struct. 700, 175 (2004).
  29. T. Naseem and M. A. Farrukh, J. Chem. 2015, 1 (2015).
  30. G. N. Vayssilov, M. Mihaylov, P. S. Petkov, et al., J. Phys. Chem. C 115, 23435 (2011).
  31. M. A. Ditta, M. A. Farrukh, S. Ali, and N. Younas, Russ. J. Appl. Chem. 90, 151 (2017).
  32. S. Ahmad, M. A. Farrukh, M. Khan, M. Khaleeq-ur-Rahman, and M. A. Tahir, Canad. Chem. Trans. 2, 122 (2014).
  33. M. M. Masadeh, G. A. Karasneh, M. A. Al-Akhras, B. A. Albiss, K. M. Aljarah, et al., Cytotechnology 67, 427 (2015).
  34. S. Perveen and M. A. Farrukh, J. Mater. Sci. Mater. Electron. 28, 10806 (2017).
  35. A. Afzaal and M. A. Farrukh, Mater. Sci. Eng. B 22, 167 (2017).
  36. S. Ali and M. A. Farrukh, J. Chin. Chem. Soc. 65, 276 (2017).
  37. D. M. Prabaharan, K. Sadaiyandi, M. Mahendran, and S. Sagadevan, Mater. Res. 19, 478 (2019).
  38. B. Gilbert, C. Frandsen, E. R. Maxey, and D. M. Sherman, Phys. Rev. B 79, 1 (2009).
  39. V. Mohanraj, R. Jayaprakash, J. Chandrasekaran, R. Robert, and P. Sangaiya, Mater. Sci. Semicond. Process. 66, 131 (2017).
  40. Y. B. Acharya, Solid-State Electron. 45, 1115 (2001).
  41. S. T. Shah, Yehya W. A. O. Saad, K. Simarani, Z. Z. Chowdhury, et al., Nanomaterials 7, 1 (2017).
  42. P. Burnham, N. Dollahon, C. H. Li, A. J. Viescas, and G. C. Papaefthymiou, J. Nanopart. 2013, 1 (2013).
  43. S. Gao, W. Zhang, Z. An, S. Kong, and D. Chen, Adsorpt. Sci. Technol. 37, 185 (2017).
  44. B. V. Shitole, N. V. Shitole, S. B. Ade, and G. K. Kakde, Orbital: Electron. J. Chem. 7, 240 (2015).