Examples



mdbootstrap.com



 
Статья
2022

Kinetics of the Sorption of Theophylline in Pectin Hydrogels with Different Structural Properties


S. A. KoksharovS. A. Koksharov, S. V. AleevaS. V. Aleeva, O. V. LepilovaO. V. Lepilova
Российский журнал физической химии А
https://doi.org/10.1134/S003602442204015X
Abstract / Full Text

Approaches to achieving the structure-preserving release of pectin substances and modeling the block cellular structure of their hydrogels are proposed. The approaches are based on viscosimetric and IR spectral data on the degree of polymerization and the ratio of galacturonate units in the nonsubstituted, methoxylated, and calcium pectate forms. The effect the structural organization of polyuronides has on the kinetic parameters of outer and inner diffusion limitations of mass transfer, and on the rate constant of sorption interaction and the ultimate sorption capacity of the biopolymer with respect to theophylline used as a model of azaheterocyclic mycotoxins is outlined using the example of pectins extracted from flax seeds and apple peels.

Author information
  • Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045, Ivanovo, RussiaS. A. Koksharov, S. V. Aleeva & O. V. Lepilova
References
  1. E. Wielogórska, S. MacDonald, and C. T. Elliot, World Mycotoxin J. 9, 419 (2016). https://doi.org/10.3920/WMJ2015.1919
  2. S. Marin, A. J. Ramos, C. Cano-Sancho, and V. Sanchis, Food Chem. Toxicol. 60, 218 (2013). https://doi.org/10.1016/j.fct.2013.07.047
  3. H. P. van Egmond, R. C. Schothorst, and M. A. Jonker, Anal. Bioanal. Chem. 389, 147 (2007). https://doi.org/10.1007/s00216-007-1317-9
  4. Ahmad Alshannaq and Yu. Jae-Hyuk, Int. J. Environ Res. Publ. Health 14, 632 (2017). https://doi.org/10.3390/ijerph14060632
  5. G. J. A. Speijers and M. H. M. Speijers, Toxicol. Lett. 153, 91 (2004). https://doi.org/10.1016/j.toxlet.2004.04.046
  6. I. Rodrigues and K. Naehrer, Toxins 4, 663 (2012). https://doi.org/10.3390/toxins4090663
  7. M. Wang, S. E. Hearon, T. D. Phillips, et al., J. Environ. Sci. Health B 54, 514 (2019). https://doi.org/10.1080/03601234.2019.1604039
  8. M. Wang, S. Safe, S. E. Hearon, et al., Environ. Pollut. 255, 113210 (2019). https://doi.org/10.1016/j.envpol.2019.113210
  9. L. Kozak, Z. Szilagyi, L. Toth, et al., Appl. Microbiol. Biotechnol. 103, 1599 (2019). https://doi.org/10.1007/s00253-018-09594-x
  10. T. R. Miller, L. J. Beversdorf, C. A. Weirich, et al., Marine Drugs 15, 160 (2017). https://doi.org/10.3390/md15060160
  11. V. I. Sukharevich and Yu. M. Polyak, Biol. Vnutr. Vod, No. 6, 562 (2020). https://doi.org/10.1134/s1995082920060140
  12. W. W. Carmichael, Hum. Ecol. Risk Assess. 7, 1393 (2001). https://doi.org/10.1080/20018091095087
  13. E. Dittmann, D. P. Fewer, and B. A. Neilan, FEMS Microbiol Rev. 37, 23 (2013). https://doi.org/10.1111/1574-6976.12000
  14. T. Papadimitriou, I. Kagalou, C. Stalikas, et al., Ecotoxicology 21, 1155 (2012). https://doi.org/10.1007/s10646-012-0870-y
  15. S. V. Aleeva, G. V. Chistyakova, O. V. Lepilova, and S. A. Koksharov, Russ. J. Phys. Chem. A 92, 1583 (2018). https://doi.org/10.1134/S0036024418080022
  16. S. A. Koksharov, S. V. Aleeva, and O. V. Lepilova, J. Mol. Liq. 283, 606 (2019). https://doi.org/10.1016/j.molliq.2019.03.109
  17. O. V. Lepilova, S. A. Koksharov, and S. V. Aleeva, Russ. J. Appl. Chem. 91, 90 (2018). https://doi.org/10.1134/S1070427218010147
  18. S. V. Aleeva, O. V. Lepilova, and S. A. Koksharov, Prot. Met. Phys. Chem. Surf. 57, 37 (2021). https://doi.org/10.1134/S2070205121010032
  19. E. Pretsch, Ph. Buhlmann, and M. Badertscher, Structure Determination of Organic Compounds (Springer, Berlin, 2009). https://doi.org/10.1007/978-3-540-93810-1
  20. S. A. Koksharov, S. V. Aleeva, and O. V. Lepilova, Ros. Khim. Zh. 65 (1), 12 (2021). https://doi.org/10.6060/rcj.2021651.2
  21. M. P. Filippov, Food Hydrocolloids 6, 115 (1992). https://doi.org/10.1016/S0268-005X(09)80060-X
  22. S. V. Aleeva, G. V. Chistyakova, and S. A. Koksharov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 52 (10), 118 (2009). https://elibrary.ru/download/elibrary_12969035_29916512.pdf
  23. G. V. Chistyakova and S. A. Koksharov, Russ. J. Gen. Chem. 84, 763 (2014). https://doi.org/10.1134/S1070363214040276
  24. E. R. Morris, D. A. Powell, M. J. Gidley, et al., J. Mol. Biol. 155, 517 (1982). https://doi.org/10.1016/0022-2836(82)90484-3
  25. B. Zhang, B. Hu, M. Nakauma, et al., Food Res. Int. 116, 232 (2019). https://doi.org/10.1016/j.foodres.2018.08.020
  26. A. Assifaoui, A. Lerbret, H. T. D. Uyen, et al., Soft Matter 11, 551 (2015). https://doi.org/10.1039/c4sm01839g
  27. W. J. Plazinski, Comput. Chem. 32, 2988 (2011). https://doi.org/10.1002/jcc.21880
  28. M. N. Akhtar, Z. Mushtaq, N. Ahmad, et al., Processes 7, 189 (2019). https://doi.org/10.3390/pr7040189
  29. A. P. Castañeda-Cachay, N. Z. Gutiérrez, and R. Siche, Sci. Agropecuar. 10, 19 (2019). https://doi.org/10.17268/sci.agropecu.2019.01.02
  30. W. J. Weber, Jr. and J. C. Morris, J. Sanit. Eng. Div. 89, 31 (1963). https://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID = 1215797
  31. N. F. Campos, C. Barbosa, J. M. Rodríguez-Díaz, et al., Adsorp. Sci. Technol. 36, 1 (2018). https://doi.org/10.1177/0263617418773844
  32. V. F. Sazonova, O. V. Perlova, N. A. Perlova, and A. P. Polikarpov, Colloid. J. 79, 270 (2017). https://doi.org/10.1134/S1061933X17020132
  33. M. V. Maslova, V. I. Ivanenko, and L. G. Gerasimova, Russ. J. Phys. Chem. A 93, 1245 (2019). https://doi.org/10.1134/S0036024419060219
  34. N. G. Polyanskii, G. V. Gorbunov, and N. L. Polyanskaya, Research Methods of Ion Exchangers (Khimiya, Moscow, 1976) [in Russian].
  35. Yu. Sh. Ho, J. C. Y. Ng, and G. McKay, Sep. Purif. Methods 2, 189 (2000). https://doi.org/10.1081/SPM-100100009
  36. Yu. Sh. Ho, Scientometrics 1, 171 (2004). https://doi.org/10.1023/B:SCIE.0000013305.99473.cf
  37. S. Douven, C. A. Paez, and C. J. Gommes, J. Colloid Interface Sci. 448, 437 (2015). https://doi.org/10.1016/j.jcis.2015.02.053