Flaky Structured V2O5: Morphology, Formation Scheme and Supercapactive Performance

B. SaravanakumarB. Saravanakumar, K. K. PurushothamanK. K. Purushothaman, G. MuralidharanG. Muralidharan
Российский электрохимический журнал
Abstract / Full Text

Vanadium pentoxide (V2O5) based electrodes for energy storage devices have captured sizeable attention in the past decade owing to their attractive physiochemical features. In the present work, flaky structured V2O5 was prepared using a single step hydrothermal route. The results from analytical investigations hold up well with the formation scheme proposed. The flaky morphology of V2O5 facilitates additional pathways for electron transport and effective ion access. When employed as a supercapacitor electrode in a neutral electrolyte, this flaky V2O5 electrode demonstrates a specific capacitance of 472 F g−1. Besides, it retains maximum capacitance at higher current density confirming its good rate performance. An asymmetric type supercapacitor using flaky V2O5 as positive electrode and activated carbon as negative electrode exhibits specific capacitance of 69 F g−1. This device shows energy density of 10 W h kg−1 within the operational window of 1 V.

Author information
  • Department of Physics, Dr. Mahalingam College of Engineering and Technology, Pollachi, 642003, IndiaB. Saravanakumar
  • Department of Physics, Aringar Anna Government Arts and Science College, Karaikal, Puduchery, 609605, IndiaK. K. Purushothaman
  • Department of Physics, Gandhigram Rural Institute, Gandhigram, Dindigul, Tamilnadu, 624302, IndiaG. Muralidharan
  1. Chen, T. and Dai, L., Carbon nanomaterials for high-performance supercapacitors, Mat. Today, 2013, vol. 16, p. 272.
  2. Yuan, L., Lu, X.H., Xiao, X., Zhai, T., Dai, J., Zhang, F., Hu, B., Wang, X., Gong, L., Chen, J., Hu, C., Tong, Y., Zhou, J., and Wang, Z.L., Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure, ACS Nano, 2012, vol. 6, no. 1, p. 656.
  3. Jiang, Y., Wang, P., Zang, X., Yang, Y., Kozinda, A., and Lin, L., Uniformly embedded metal oxide nanoparticles in vertically aligned carbon nanotube forests as pseudocapacitor electrodes for enhanced energy storage, Nano Lett., 2013, vol. 13, p. 3524.
  4. Sarkar, D., Khan, G.G., Singh, A.K., and Mandal, K., High-performance pseudocapacitor electrodes based on a-Fe2O3/MnO2 core-shell nanowire heterostructure arrays, J. Phys. Chem. C, 2013, vol. 117, p. 15523.
  5. Guan, Q., Cheng, J., Wang, B., Ni, W., Gu, G., Li, X., Huang, L., Yang, G., and Nie, F., Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors, ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 10, p. 7626.
  6. Wang, Y., Song, Y., and Xia, Y., Electrochemical capacitors: mechanism, materials, systems, characterization and applications, Chem. Soc. Rev., 2016, vol. 45, p. 5925.
  7. Zhang, X., Shi, W., Zhu, J., Zhao, W., Ma, J., Mhaisalkar, S., Maria, T. L., Yang, Y., Zhang, H., Hng, H.H., and Yan, Q., Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes, Nano Res., 2010, vol. 3, no. 9, p. 643.
  8. Cheng, H., Lu, Z.G., Deng, J.Q., Chung, C.Y., Zhang, K., and Li, Y.Y., A facile method to improve the high rate capability of Co3O4 nanowire array electrodes, Nano Res., 2010, vol. 3, no. 12, p. 895.
  9. Jagadale, A.J., Kumbhar, V.S., Dhawale, D.S., and Lokhande, C.D., Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes, Electrochim. Acta, 2013, vol. 98, p. 32.
  10. Yang, H., Jiang, J., Zhou, W., Lai, L., Xi, L., Lam, Y.M., Shen, Z., Khezri, B., and Yu, T., Influences of graphene oxide support on the electrochemical performances of graphene oxide-MnO2 nanocomposites, Nanoscale Res Lett., 2011, vol. 6, p. 531.
  11. Zhu, J., Cao, L., Wu, Y., Gong, Y., Liu, Z., Hoster, H.E., Zhang, Y., Zhang, S., Yang, S., Yan, Q., Ajayan, P.M., and Vajtai, R., Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors, Nano Lett., 2013, vol. 13, p. 5408.
  12. Saravanakumar, B., Purushothaman, K.K., and Muralidharan, G., Interconnected V2O5 nanoporous network for high-performance supercapacitors, ACS Appl. Mater. Interfaces, 2012, vol. 4, p. 4484.
  13. Ramadoss, A., Saravanakumar, B., and Kim, S.J., Vanadium pentoxide/reduced graphene oxide composite as an efficient electrode material for high-performance supercapacitors and self-powered systems, Energy Technol., 2015, vol. 3, p. 913.
  14. Daubert, J.S., Lewis, N.P., Gotsch, H.N., Mundy, J.Z., Monroe, D.N., Dickey, E.C., Losego, M.D., and Parsons, G.N., Effect of meso-and micro-porosity in carbon electrodes on atomic layer deposition of pseudocapacitive V2O5 for high performance supercapacitors, Chem. Mater., 2015, vol. 27, no. 19, p. 6524.
  15. Ye, G., Gong, Y., Keyshar, K., Husain, A.M., Brunetto, G., Yang, S., Vajtai, R., and Ajayan, P.M., 3D reduced graphene oxide coated V2O5 nanoribbon scaffolds for high-capacity supercapacitor electrodes, Part. Part. Syst. Charact., 2015, vol. 32, p. 817.
  16. Perera, S.D., Patel, B., Bonso, J., Grunewald, M., Ferraris, J.P., and Balkus, K.J., Jr., Vanadium oxide nanotube spherical clusters prepared on carbon fabrics for energy storage applications, ACS Appl. Mater. Interfaces, 2011, vol. 3, no. 11, p. 4512.
  17. Aravindan, V., Cheah, Y.L., Mak, W.F., Wee, G., Chowdari, B.V.R., and Madhavi, S., Fabrication of high energy-density hybrid supercapacitors using electrospun V2O5 nanofibers with a self-supported carbon nanotube network, Chem. Plus. Chem., 2012, vol. 77, p. 570.
  18. Li, L., Peng, S., Wu, H.B., Yu, L., Madhavi, S., and Lou, X.W., Adv. Energy Mater., 2015, vol. 5, p. 1500753.
  19. Liang, K., Tang, X., Hu, W., and Yang, Y., Chem. Electro. Chem., 2016, vol. 3, p. 704.
  20. Sun, B., Huang, K., Qi, X., Wei, X., and Zhong, J., Adv. Funct. Mater., 2015, vol. 25, p. 5716.
  21. Qu, Q.T., Liu, L.L., Wu, Y.P., and Holze, R., Electrochemical behavior of V2O5·0.6H2O nanoribbons in neutral aqueous electrolyte solution, Electrochim. Acta, 2013, vol. 96, p. 8.
  22. Shao, J., Li, X., Qu, Q., and Wu, Y., Study on different power and cycling performance of crystalline KMnO2 · nH2O as cathode material for supercapacitors in Li2SO4, Na2 SO4, and K2SO4 aqueous electrolytes, J. Power Sources, 2013, vol. 223, p. 56.
  23. Qu, Q.T., Zhang, P., Wang, B., Chen, Y., Tian, S., Wu, Y., and Holze, R., Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors, J. Phys. Chem. C, 2009, vol. 113, no. 31, p. 14020.
  24. Liu, Y., Clark, M., Zhang, Q., Yu, D., Liu, D., Liu, J., and Cao, G., V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries, Adv. Energy Mater., 2011, vol. 1, p. 194.
  25. Nagamuthu, S., Vijayakumar, S., and Ryu, K.S., Synthesis of Ag anchored Ag3VO4 stacked nanosheets: toward a negative electrode material for high-performance asymmetric supercapacitor devices, J. Phys. Chem. C, 2016, vol. 120, p. 18963.
  26. Saravanakumar, B., Purushothaman, K.K., and Muralidharan, G., Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors, Mat. Chem. Phys., 2016, vol. 170, p. 266.
  27. Saravanakumar, B., Purushothaman, K.K., and Muralidharan, G., MnO2 grafted V2O5 nanostructures: formation mechanism, morphology and supercapacitive features, Cryst. Eng. Comm., 2014, vol. 16, p. 10711.
  28. Livage, J., Vanadium pentoxide gels, Chem. Mater., 1991, vol. 3, p. 578.
  29. Fu, H., Xie, H., Yang, X., An, X., Jiang, X., and Yu, A., Hydrothermal synthesis of silver vanadium oxide (Ag0.35V2O5) nanobelts for sensing amines, Nanoscale Res. Lett., 2015, vol. 10, p. 411.
  30. Derazkola, S.M., Ajabshir, S.Z., and Niasari, M.S., New sodium dodecyl sulfate-assisted preparation of Nd2O3 nanostructures via a simple route, RSC Adv., 2015, vol. 5, p. 56666.
  31. Wang, J., Chen, J., Yu, Y., Yu, W., Meng, X., Chen, J., and Li, D., One-step SDS-assisted hydrothermal synthesis and photoelectrochemical study of Ag4V2O7 nanorods decorated with Ag nanoparticles, Cryst. Eng. Comm., 2015, vol. 17, p. 6661.
  32. Purushothaman, K.K., Manohara Babu, I., Sethuraman, B., and Muralidharan, G., Nanosheet-assembled NiO microstructures for high-performance supercapacitors, ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 10767.
  33. Mazloom, F., Arani, M.M., Arani, M.G., and Niasari, M.S., Novel sodium dodecyl sulfate-assisted synthesis of Zn3V2O8 nanostructures via a simple route, J. Molec. Liquids, 2016, vol. 214, p. 46.
  34. Miao, R., Zeng, W., and Gao, Q., SDS-assisted hydrothermal synthesis of NiO flake-flower architectures with enhanced gas-sensing properties, Appl. Surf. Sci., 2016, vol. 384, p. 304.
  35. Jiang, L.Q., Gao, L., and Sun, J., Production of aqueous colloidal dispersions of carbon nanotubes, J. Colloid Interface Sci., 2003, vol. 260, p. 89.
  36. Zhao, Y., Tan, X., Yu, T., and Wang, S.C., SDS-assisted solvothermal synthesis of BiOBr microspheres with highly visible-light photocatalytic activity, Mater. Lett., 2016, vol. 164, p. 243.
  37. Jagadale, A.D., Guan, G., Li, X., Du, X., Ma, X., Hao, X., and Abudula, A., Ultrathin nanoflakes of cobalt-manganese layered double hydroxide with high reversibility for asymmetric supercapacitor, J. Power Sources, 2016, vol. 306, p. 526.
  38. Hsu, C.T., Hu, C.C., Wu, T.H., Chen, J.C., Rajkumar, M., How the electrochemical reversibility of a battery-type material affects the charge balance and performances of asymmetric supercapacitors, Electrochim. Acta, 2014, vol. 146, p. 759.
  39. Meher, S.K., Justin, P., and Rao, R., Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis, J. Phys. Chem. C, 2010, vol. 114, no. 11, p. 5205.
  40. Liu W.W., Yan X.B., and Xue Q.J., Multilayer hybrid films consisting of alternating graphene and titanium dioxide for high-performance supercapacitors, J. Mater. Chem. C, 2013, vol. 1, p. 1413.
  41. Lee, M., Balasingam, S.K., Jeong, H.Y., Hong, W.G., Lee, H.B.R., Kim, R.H., and Jun, Y., One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage, Sci Rep., 2015, vol. 5, p. 8151.
  42. Wu, Y., Gao, G., and Wu, G., Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life, J. Mater. Chem. A, 2015, vol. 3, p. 1828.
  43. Perera, S.D., Liyanage, A.D., Nijem, N., Ferraris, J.P., Chabal, Y.J., and Balkus, K.J., Jr., Vanadium oxide nanowire-graphene binder free nanocomposite paper electrodes for supercapacitors: a facile green approach, J. Power Source, 2013, vol. 230, p. 130.
  44. Kalambate, P.K., Dar, R.A., Karna, S.P., and Srivastava, A.K., High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode, J. Power Sources, 2015, vol. 276, p. 262.