Examples



mdbootstrap.com



 
Статья
2020

Effect of Copper Phthalocyanin Nanostructures on the Photovoltaic Characteristics of a Polymer Solar Cell


A. K. AimukhanovA. K. Aimukhanov, A. K. ZeinidenovA. K. Zeinidenov, A. V. ZavgorodniyA. V. Zavgorodniy, T. N. KopylovaT. N. Kopylova, R. M. GadirovR. M. Gadirov
Российский физический журнал
https://doi.org/10.1007/s11182-020-02005-7
Abstract / Full Text

The results of studying the influence of copper phthalocyanine (CuPc) nanostructures on the generation and transfer of charge carriers in the semiconductor polymer poly-(3hexylthiophene) (P3HT) are presented. It is shown that the observed broadening and shift of maxima in the absorption spectra of P3HT upon the addition of nanostructures to the polymer are associated with an increase in the film crystallization degree. The observed increase in the short-circuit current and negative magnetic effect upon the addition of CuPc nanostructures is associated with the size effects.

Author information
  • E. A. Buketov Karaganda State University, Karaganda, Republic of KazakhstanA. K. Aimukhanov, A. K. Zeinidenov & A. V. Zavgorodniy
  • National Research Tomsk State University, Tomsk, RussiaT. N. Kopylova & R. M. Gadirov
References
  1. T. A. Skotheim and J. R. Reynolds, Handbook of Conducting Polymers, CRC Press, Boca Raton (2007).
  2. S. E. Shaheen, D. S. Ginley, and G. E. Jabbour, MRS Bulletin, 30, No. 1, 10–19 (2005).
  3. I. Etxebarria, J. Ajuria, and R. Pacios, Org. Electron., 19, 34–60 (2015).
  4. B. R. Ilyassov, А. M. Alekseev, et al., Bulletin of the University of Karaganda-Physics, 80, No. 3, 27–33 (2016).
  5. C. Vidya, P. A. Hoskeri, and C. M. Joseph, Mater. Today-Proc., 2, 1770–1775 (2015).
  6. P. Keeratithiwakorn, P. Songkeaw, et al., Mater. Today-Proc., 4, 6194–6199 (2017).
  7. K. Kim, K. Ihm, and B. Kim, Acta Phys. Pol. A, 127, No. 4, 1176–1179 (2015).
  8. F. Liu, J. Sun, et al., Nanotechnology, 26, No. 22, 225601 (2015).
  9. T. Asahi, Y. Tamaki, et al., Handai Nanophotonics, 1, 225–236 (2004).
  10. A. V. Zavgorodniy, A. K. Aimukhanov, et al., Bulletin of the University of Karaganda-Physics, 93, No. 1, 18–25 (2019).
  11. L. Yan, Y. Wu, et al., Synth. Met., 159, No. 21–22, 2323–2325 (2009).
  12. M. S. Liao and S. Scheiner, J. Chem. Phys., 114, No. 22, 9780–9791 (2001).
  13. M. M. El-Nahass, F. S. Bahabri, and R. Al-Harbi, Egypt. J. Solid, 24, No. 1, 11–19 (2001).
  14. T. Zou, X. Wang, et al., Crystals, 8, No. 1, 22 (2018).
  15. A. A. Hussein, W. A. Hussain, and K. Hassan, J. Zankoy Sulaimani. Part A, 17, No. 1, 167–176 (2015).
  16. S. Tiwari and N. C. Greenham, Op. Quantum Electron., 41, No. 2, 69–89 (2009).
  17. V. D. Mihailetchi, H. X. Xie, et al., Adv. Funct. Mater., 16, 699–708 (2006).
  18. J. J. Khanam and S. Y. Foo, Polymers, 11, No. 2, 383 (2019).
  19. H. Zang, I. N. Ivanov, and B. Hu, IEEE J. Selected Topics in Quantum Electron., 16, No. 6, 1801–1806 (2010).
  20. P. Janssen, M. Cox, et al., Nature Commun., 4, 2286 (2013).
  21. W. Wagemans and B. Koopmans, Phys. Status Solidi B, 248, No. 5, 1029–1041 (2011).
  22. P. A. Bobbert, T. D. Nguyen, et al., Phys. Rev. Lett., 99, No. 21, 216801 (2007).