Статья
2018

Dye-Sensitized Solar Cell Utilizing TiO2 Nanostructure Films: Effect of Synthesis Temperature


A. S. Sulaiman A. S. Sulaiman , M. Y. A. Rahman M. Y. A. Rahman , A. A. Umar A. A. Umar , M. M. Salleh M. M. Salleh
Российский электрохимический журнал
https://doi.org/10.1134/S102319351801007X
Abstract / Full Text

This paper is concerned with a study of the influence of synthesis temperature on the properties of TiO2 films and the performance of dye-sensitized solar cell (DSSC). The TiO2 film samples synthesized via liquid phase deposition for 5 h at various temperatures, namely, 40, 50, 60, 70 and 80°C. It was found that the morphological shape of the film changes with growth temperature. The optical absorption increases with growth temperature. However, the photoluminescence decreases with growth temperature. These TiO2 samples were applied in a DSSC of ITO/TiO2/electrolyte/platinum. The DSSC utilizing the sample grown at 40°C demonstrated the highest photovoltaic parameters with the Jsc, and η of 1.40 mA cm–2 and 0.44% respectively. This is due to the smallest grain size of TiO2 films and the smallest bulk resistance of the device.

Author information
  • Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Selangor, Bangi, 43600, Malaysia

    A. S. Sulaiman, M. Y. A. Rahman, A. A. Umar & M. M. Salleh

References
  1. O’Regan, B. and Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, vol. 353, p.737.
  2. Ma, T., Kida, T., Akiyama, M., Inoue, K., Tsunematsu, S., Yao, K., Noma, H., and Abe, E., Preparation and properties of nanostructured TiO2 electrode by a polymer organic-medium screen-printing technique, Electrochem. Commun., 2003, vol. 5, pp. 369–372.
  3. Yadav, B.C., Pandey, N.K., Srivastava, A.K., and Sharma, P., Optical humidity sensors based on titania films fabricated by sol–gel and thermal evaporation methods, Meas. Sci. Technol., 2007, vol. 18, pp. 260–264.
  4. Yamamoto, S., Sumita, T., Sugiharuto, Miyashita, A., and Naramoto, H., Preparation of epitaxial TiO2 films by pulsed laser deposition technique, Thin Solid Films, 2001, vol. 401, pp. 88–93.
  5. Kitano, M., Takeuchi, M., Matsuoka, M., Thomas, J.M., and Anpo, M., Preparation of visible light-responsive TiO2 thin film photocatalysts by an RF magnetron sputtering deposition method and their photocatalytic reactivity, Chem. Lett., 2005, vol. 34, pp. 616–617.
  6. Rausch, N. and Burte, E.P., Thin TiO2 films prepared by low pressure chemical vapor deposition, J. Electrochem. Soc., 1993, vol. 140, pp. 145–149.
  7. Roza, L., Umar, A.A., Rahman, M.Y.A., and Salleh, M.M., Seed-mediated liquid phase deposition method for TiO2 nanostructure growth on ITO substrate: Effect of surfactant, Adv. Mater. Res., 2012, vol. 364, pp. 393–397.
  8. Rahman, M.Y.A., Umar, A.A., Roza, L., and Salleh, M.M., Effect of optical property of surfactanttreated TiO2 nanostructure on the performance of TiO2 photo-electrochemical cell, J. Solid State Electrochem., 2012, vol. 16, pp. 2005–2010.
  9. Rahman, M.Y.A., Umar, A.A., Roza, L., and Salleh, M.M., Morphological, optical, structural and photoelectrochemical properties of TiO2 nanoflower prepared via PVP surfactant assisted liquid phase deposition technique, J. Exp. Nanosci., 2015, vol. 10, pp. 925–936.
  10. Rahman, M.Y.A., Umar, A.A., Roza, L., and Salleh, M.M., Morphology, structure, optical property and photoelectrochemical property of TiO2 nanoflower films synthesised via liquid phase deposition technique, Micro Nano Lett., 2014, vol. 9, pp. 253–256.
  11. Yu, J.-G., Yu, H.-G., Cheng, B., Zhao, X.-J., Yu, J.C., and Ho, W.-K., The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition, J. Phys. Chem. B, 2003, vol. 107, pp. 13871–13879.
  12. Gong, J., Yang, C., Pu, W., and Zhang, J., Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl benzenesulfonate, Chem. Eng. J., 2011, vol. 167, pp. 190–197.
  13. Deki, S. and Aoi, Y., Synthesis of metal oxide thin films by liquid-phase deposition method, J. Mater. Res., 1998, vol. 13, pp. 883–890.
  14. Rahman, M.Y.A., Umar, A.A., Roza, L., and Salleh, M.M., Effect of organic dye on the performance of dye-sensitized solar cell utilizing TiO2 nanostructure films synthesized via CTAB-assisted liquid phase deposition technique, Russ. J. Electrochem., 2014, vol. 50, pp. 1072–1076.
  15. Chang, H., Su, H.-T., Chen, W.-A., Huang, K.D., Chien, S.-H., Chen, S.-L., and Chen, C.-C., Fabrication of multilayer TiO2 thin films for dye sensitized solar cells with high conversion efficiency by electrophoretic deposition, Sol. Energy, 2010, vol. 84, pp. 130–136.
  16. Kandavelu, V., Huang, H.-S., Jian, J.-L., Yang, T.C.-K., Wang, K.-Li., and Huang, S.-T., Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell, Sol. Energy, 2009, vol. 83, pp. 574–581.
  17. Yang, S.-C., Yang, D.-J., Kim, J., Hong, J.-M., Kim, H.-G., Kim, I.-D., and Lee, H., Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensitized solar cells, Adv. Mater., 2008, vol. 20, pp. 1059–1064.