Статья
2017

Application of anodized edge-plane pyrolytic graphite electrode for analysis of clindamycin in pharmaceutical formulations and human urine samples


Mojtaba Hadi Mojtaba Hadi , Ebrahim Honarmand Ebrahim Honarmand
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517040061
Abstract / Full Text

Different graphitic carbon-based electrode materials were evaluated for direct electro-oxidation of clindamycin and electroanalytical parameters such as sensitivity, residual background current, and signal-tobackground current ratio were compared to select the best one for the clindamycin electroanalysis. Such electrode materials include glassy carbon, carbon paste, pyrolytic graphite (edge-plane and basal-plane), carbon nanotube, reduced graphene oxide, and carbon black. The edge-plane pyrolytic graphite electrode after a simple and fast electrochemical pretreatment showed superior performance compared with the other carbon electrodes. Raman and Fourier transform infrared spectroscopy were employed to analyze the surface microstructure and chemical bonding of the carbon materials and scanning electron microscopy was used to study their surface morphologic features. The applicability of the electrochemically activated edge-plane pyrolytic graphite electrode for the determination of clindamycin in pharmaceutical formulations and human urine samples was evaluated.

Author information
  • Department of Chemistry, Faculty of Sciences, University of Qom, Qom, Iran

    Mojtaba Hadi & Ebrahim Honarmand

References
  1. Daum, R.S. and Engl, N., J. Med., 2007, vol. 357, p. 380.
  2. Batzias, G.C., Delis, G.A., and Koutsoviti-Papadopoulou, M., J. Pharm. Biomed. Anal., 2004, vol. 35, p. 545.
  3. Catena, E., Perez, G., and Sadaba, B., J. Pharm. Biomed. Anal., 2009, vol. 50, p. 649.
  4. Cho, S.H., Im, H.T., and Park, W.S., Biomed. Chromatogr., 2005, vol. 19, p. 783.
  5. El-Adl, S.M., Sadek, M.H., and Hassan, M.H., Asian J. Res. Pharm. Sci., 2014, vol. 4, p. 179.
  6. El-Yazbi, F.A. and Blaih, S.M., Analyst, 1993, vol. 118, p. 577.
  7. Frank, D., Montsko, G., and Juricskay, I., J. Chemother., 2011, vol. 23, p. 282.
  8. Liang, X., Du, L., and Su, F., Magn. Reson. Chem., 2014, vol. 52, p. 178.
  9. Martens-Lobenhoffer, J. and Banditt, P., J. Chromatogr. B: Biomed. Sci. Appl., 2001, vol. 755, p. 143.
  10. Mifsud, M., Vella, J., and Ferrito, V., J. Chem. Pharm. Res., 2014, vol. 6, p. 696.
  11. Platzer, J. and White, B.A., J. Pharm. Biomed. Anal., 2006, vol. 41, p. 84.
  12. Rechberger, G.N., Fauler, G., and Windischhofer, W., Rapid Commun. Mass Spectrom., 2003, vol. 17, p. 135.
  13. Yu, L.L., Chao, C.K., and Liao, W.J., J. Chromatogr. B: Biomed. Sci. Appl., 1999, vol. 19, p. 287.
  14. Uslu, B. and Ozkan, S.A., Anal. Lett., 2007, vol. 40, p. 817.
  15. Uslu, B. and Ozkan, S.A., Comb. Chem. High. T. Scr., 2007, vol. 10, p. 495.
  16. Kinoshita, K., Carbon, Electrochemical and Physicochemical Properties, New York: John Wiley and Sons, 1988.
  17. McCreery, R.L., in Electroanalytical Chemistry, Bard, A.J., Ed., Vol. 17, New York: Marcel Dekker, 1991, pp. 221–374.
  18. McCreery, R.L., in Interfacial Electrochemistry, Wieckowski, A., Ed., New York: Dekker, 1999, pp. 631–647.
  19. McCreery, R.L., Chem. Rev., 2008, vol. 108, p. 2646.
  20. Pumera, M., Ambrosi, A., and Bonanni, A., Trend. Anal. Chem., 2010, vol. 29, p. 954.
  21. Shao, Y., Wang, J., and Wu, H., Electroanalysis, 2010, vol. 22, p. 1027.
  22. Wallace, G.G., Chen, J., and Li, D., J. Mater. Chem., 2010, vol. 20, p. 3553.
  23. Wu, Y., Ye, S., and Hu, S., J. Pharm. Biomed. Anal., 2006, vol. 41, p. 820.
  24. Habib, I.H.I., Rizk, M.S., and El-Aryan, Th.R., Pharm. Chem. J., 2011, vol. 44, p. 705.
  25. Wong, A., Razzino, C.A., Silva, T.A., and Fatibello-Filho, O., Sens. Actuat. B, 2016, vol. 231, p. 183.
  26. Norouzi, P., Larijani, B., Ezoddin, M., and Ganjali, M.R., Mater. Sci. Eng. C, 2008, vol. 28, p. 87.
  27. Hu, Y., Zhang, Z., Zhang, H., Yu, X., and Yao, S., Chem. J. Chin. U., 2009, vol. 30, p. 1703.
  28. Banks, E. and Compton, R.G., Anal. Sci., 2005, vol. 21, p. 1263.
  29. Wang, Y., Alsmeyer, D.C., and McCreery, R.L., Chem. Mater., 1990, vol. 2, p. 557.
  30. Ray, K. and McCreery, R.L., Anal. Chem., 1997, vol. 69, p. 4680.
  31. Tuinstra, F. and Koenig, J.L., J. Chem. Phys., 1970, vol. 53, p. 1126.
  32. Poh, H.L. and Pumera, M., Chem. Asian J., 2012, vol. 7, p. 412.
  33. Banks, C.E. and Compton, R.G., Analyst, 2006, vol. 131, p. 15.
  34. Krivenko, A.G., Komarova, N.S., Stenina, E.V., Sviridova, L.N., Kurmaz, V.A., Kotkin, A.S., and Muradyan, V.E., Russ. J. Electrochem., 2006, vol. 42, p. 1047.
  35. Ambrosi, A., Sasaki, T., and Pumera, M., Chem. Asian J., 2010, vol. 5, p. 266.
  36. Wong, C.H.A., Ambrosi, A., and Pumera, M., Nanoscale, 2012, vol. 4, p. 4972.
  37. Bard, A.J. and Faulkner, L.R., Electrochemical Methods, New York: Wiley, 2001. 834 p.
  38. Chang, M.J., Namgung, H., and Choi, H.D., Basic Clin. Pharmacol. Toxicol., 2012, vol. 110, p. 504.