Examples



mdbootstrap.com



 
Статья
2017

Oxygen isotope exchange between the gas-phase and the electrochemical cell O2, Pt | YSZ | Pt, O2 under conditions of applied potential difference


A. V. KhodimchukA. V. Khodimchuk, M. V. Anan’evM. V. Anan’ev, V. A. EreminV. A. Eremin, E. S. TropinE. S. Tropin, A. S. FarlenkovA. S. Farlenkov, N. M. PorotnikovaN. M. Porotnikova, E. Kh. KurumchinE. Kh. Kurumchin, D. I. BroninD. I. Bronin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517080109
Abstract / Full Text

The kinetics of oxygen isotope exchange between gas-phase oxygen and the electrochemical cell O2, Pt | ZrO2 + 10 mol % Y2O3 (YSZ) | Pt, O2 with applied potential difference (ΔU = ±1.2 V) is studied in the temperature range of 600–800°С and the oxygen pressure interval of 3–13 kPa. An original design of a vacuum electrochemical cell with the separated gas space is put forward for studying how the potential difference on the electrochemical cell influences the kinetics of interaction of gas-phase oxygen with the gas electrode O2, Pt | YSZ in the electrochemical cell. It is shown that the oxygen interphase exchange rate is the higher the more negative the charge on the electrode studied; moreover, the mechanism of gas-phase oxygen exchange with the gas electrode O2, Pt | YSZ in the electrochemical cell depends fundamentally on the electrode charge sign. The possible reasons for the revealed differences are discussed; the corresponding models are proposed.

Author information
  • Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    A. V. Khodimchuk, M. V. Anan’ev, V. A. Eremin, E. S. Tropin, A. S. Farlenkov, N. M. Porotnikova, E. Kh. Kurumchin & D. I. Bronin

  • Ural Federal University Named after the First President of Russia B.N. Yeltsin, Yekaterinburg, 620000, Russia

    A. V. Khodimchuk, M. V. Anan’ev, V. A. Eremin, E. S. Tropin, A. S. Farlenkov, N. M. Porotnikova & D. I. Bronin

References
  1. Chebotin, V.N. and Perfil’ev, M.V., Elektrokhimiya tverdykh elektrolitov (Electrochemistry of Solid Electrolytes), Moscow: Khimiya, 1978.
  2. Perfil’ev, M.V., Demin, A.K., Kuzin, B.L., and Lipilin, A.S., Vysokotemperaturnyi elektroliz gazov (High-Temperature Electrolysis of Gases), Moscow: Nauka, 1988.
  3. Murygin, I.V., Elektrodnye protsessy v tverdykh elektrolitakh (Electrode Processes in Solid Electrolytes), Moscow: Nauka, 1991.
  4. Karpachev, S.V. and Filyaev, A.T., Elektrokhimiya, 1966, vol. 2, no. 11, p. 1330.
  5. Gorelov, G.P. and Kurumchin, E.Kh., Elektrokhimiya, 1990, vol. 26, no. 11, p. 1502.
  6. Bronin, D.I., Doctorate Dissertation (Chem.), Yekaterinburg, 2007.
  7. Adler, S.B., Chem. Rev., 2004, vol. 104, no. 10, p. 4791.
  8. Kurumchin, E.Kh., Doctorate Dissertation, Yekaterinburg, 1997.
  9. Fukunaga, H., Ihara, M., Sakai, K., and Yamada, K., Solid State Ionics, 1996, vol. 86-88, p. 1179.
  10. Gorelov, G.P., Kurumchin, E.Kh., and Perfil’ev, M.V., Elektrokhimiya, 1992, vol. 28, no. 10, p. 1576.
  11. Verkerk, M.J., Hammink, M.W.J., and Burggraaf, A.J., J. Electrochem. Soc., 1983, vol. 130, no. 1, p. 70.
  12. Verkerk, M.J. and Burggraaf, A.J., J. Electrochem. Soc., 1983, vol. 130, p. 78.
  13. Mizusaki, J., Amano, K., Yamauchi, S., and Fueki, K., Solid State Ionics, 1987, vol. 22, p. 313.
  14. Mizusaki, J., Amano, K., Yamauchi, S., and Fueki, K., Solid State Ionics, 1987, vol. 22, p. 323.
  15. Nishi, M., Yokokawa, H., Kishimoto, H., Yamaji, K., and Horita, T., Solid State Ionics, 2014, vol. 262, p. 392.
  16. Steele, B.C.H., Kilner, J.A., Dennis, P.F., McHale, A.E., Van Hemert, M., and Burggraaf, A.J., Solid State Ionics, 1986, vol. 18-19, p. 1038.
  17. Kurumchin, E.Kh., Ishchuk, V.P., and Gorelov, G.P., in Vysokotemperaturnaya elektrokhimiya: Elektrolity. Kinetika: Sbornik nauchnykh trudov (High-Temperature Electrochemistry: Electrodes. Kinetics: Collection of Scientific Papers), Sverdlovsk: UNTs ANSSSR, 1986, p. 87.
  18. Karpachev, S.V., Kurumchin, E.Kh., and Perfil’ev, M.V., Kinet. Katal., 1979, vol. 20, p. 123.
  19. Qi, Sh., Porotnikova, N.M., Ananyev, M.V., Kuzmin, A.V., Eremin, V.A., Pankratov, A.A., Molchanova, N.G., Reznitskikh, O.G., Farlenkov, A.S., Vovkotrub, E.G., and Zaikov, Yu.P., Trans. Nonferrous Met. Soc. China, 2016, vol. 26, p. 2916.
  20. Ananyev, M.V., Tropin, E.S., Eremin, V.A., Farlenkov, A.S., Smirnov, A.S., Kolchugin, A.A., Porotnikova, N.M., Khodimchuk, A.V., Berenov, A.V., and Kurumchin, E.Kh., Phys. Chem. Chem. Phys., 2016, vol. 18, p. 9102.
  21. Schwandt, C. and Weppner, W., J. Electrochem. Soc., 1997, vol. 144, no. 11, p. 3728.
  22. Winnubst, A.J.A., Scharenborg, A.H.A., and Burggraaf, A.J., Solid State Ionics, 1984, vol. 14, p. 319.
  23. Tsiplakides, D., Neophytides, S., and Vayenas, C.G., Solid State Ionics, 2000, vol. 136-137, p. 839.
  24. Luerszen, B., Janek, J., and Imbihl, R., Solid State Ionics, 2001, vol. 141–142, p. 701.
  25. Sum, O.S.N., Djurado, E., Pagnier, T., Rosman, N., Roux, C., and Siebert, E., Solid State Ionics, 2005, vol. 176, nos. 35–36, p. 2599.
  26. Chao, T., Walsh, K.J., and Fedkiw, P.S., Solid State Ionics, 1995, vol. 47, nos. 3–4, p. 277.
  27. Kuzin, B.L. and Komarov, M.A., Elektrokhimiya, 1993, vol. 29, no. 11, p. 1374.
  28. Sobolev, V.I., Sobyanin, V.A., Pashis, A.V., Kalinkin, A.V., and Panov, G.I., Surf. Sci., 1986, vol. 183, p. 498.