Electrochemical properties of doped lantanum–nickelate-based electrodes

A. A. Kol’chugin A. A. Kol’chugin , E. Yu. Pikalova E. Yu. Pikalova , N. M. Bogdanovich N. M. Bogdanovich , D. I. Bronin D. I. Bronin , E. A. Filonova E. A. Filonova
Российский электрохимический журнал
Abstract / Full Text

This work is devoted to the studying of effects of La2NiO4 doping with alkaline-earth elements: Ca, Sr, and Ba (at an amount of 15 mol %) on its structural, electrical, and electrochemical properties. The effects of the alkaline-earth element nature, introduction of the Ce0.8Sm0.2O1.9-electrolyte (SDC) component to the functional layer, and the presence of collecting film onto electrochemical activity of the electrodes contacting the Ce0.8Sm0.2O1.9-electrolyte are examined. The doping was found to increase the La2NiO4 full conductivity due to increase in the hole conductivity. The maximal conductivity (at the sample density of 86–89%) was obtained for the Ca-doped composition: 85 S/сm at 700°C, as compared with 65 S/сm for undoped La2NiO4. at the same time, the doping was found to deteriorate the electrodes’ electrochemical activity which is likely to be due to loss of interstitial oxygen as a result of the doping. The using of composite electrodes allows increasing polarization conductivity markedly. For instance, at 700°С the conductivity of La2NiO4 is 0.25 S/сm2; of its based composite, 0.67 S/сm2.

Author information
  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, ul. Akademicheskaya 20, Yekaterinburg, 620137, Russia

    A. A. Kol’chugin, E. Yu. Pikalova, N. M. Bogdanovich & D. I. Bronin

  • Ural Federal University, ul. Mira 19, Yekaterinburg, 620002, Russia

    A. A. Kol’chugin, E. Yu. Pikalova, D. I. Bronin & E. A. Filonova

  1. Lee, Y. and Kim, H., Ceramic Internat., 2015, vol. 41, p. 5984–5991.
  2. Nicollet, C., Flura, A., Vibhu, V., Rougier, A., Bassat, J.M., and Grenier, J.C., J. Power Sources, 2015, vol. 294, p. 473–482.
  3. Woolley, R.J. and Skinner, S.J., Solid State Ionics, 2014, vol. 255, p. 1–5.
  4. Zhao, K., Wang, Y.-P., Chen, M., Xu, Q., Kim, B.H., and Huang, D.P., Int. J. Hydrog. Energy, 2014, vol. 39, p. 7120–7130.
  5. Philippeau, B., Mauvy, F., Mazataud, C., Fourcade, S., and Grenier, J.C., Solid State Ionics, 2013, vols. 249–250, p. 17–25.
  6. Shen, Y., Zhao, H., Liu, X., and Xu, N., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 15124–15131.
  7. Shen, Y., Zhao, H., Xu, J., Zhang, X., Zheng, K., and Swierczek, K., Int. J. Hydrog. Energy, 2014, vol. 39, p. 1023–1029.
  8. Ruck, K., Krabbers, G., and Vogel, I., Mater. Res. Bull., 1999, vol. 34, p. 1689–1697.
  9. Aguadero, A., Escudero, M.J., Perez, M., Alonso, J.A., Pomjakushin, V., and Daza, L., Dalton Trans., 2006, vol. 36, p. 4377–4383.
  10. Kolchugin, A., Pikalova, E.Yu., Bogdanovich, N.M., Bronin, D.I., Pikalov, S.M., Plaksin, S.V., Ananyev, M.V., and Eremin, V.A., Solid State Ionics, 2016, vol. 288, p. 48–53.
  11. Kolchugin, A.A., Pikalova, E.Yu., Bogdanovich, N.M., and Bronin, D.I., Russ. J. Electrochem., 2015, vol. 51, p. 483–490.
  12. Vashook, V.V., Tolochko, S.P., Yushkevich, I.I., Makhnach, L.V., Kononyuk, I.F., Altenburg, H., Hauck, J., and Ullmann, H., Solid State Ionics, 1998, vol. 110, p. 245–253.
  13. Yaroslavtsev, I.Y., Bogdanovich, N.M., Vdovin, G.K., Dem’yanenko, T.A., Bronin, D.I., and Isupova, L.A., Russ. J. Electrochem., 2014, vol. 50, p. 548–553.
  14. Bogdanovich, N.M., Gorelov, V.P., Balakireva, V.B., and Dem’yanenko, T.A., Russ. J. Electrochem., 2005, vol. 41, p. 576–581.
  15. Takeda, Y., Kanno, R., Sakano, M., Yamamoto, O., Bando, Y., Akinaga, H., Takita, K., and Goodenough, J.B., Mater. Res. Bull., 1990, vol. 25, p. 293–306.
  16. Tang, J.P., Dass, R.I., and Manthiram, A., Mater. Res. Bull., 2000, vol. 35, p. 411–424.
  17. Park, J.C., Kim, D.K., Byeon, S.H., and Kim, D., J. Synchrotron Rad., 2001, vol. 8, p. 704–706.
  18. Zhang, Z. and Greenblatt, M., J. Solid State Chem., 1994, vol. 111, p. 141–146.
  19. Nishiyama, S., Sakaguchi, D., and Hattori, T., Solid State Commun., 1995, vol. 94, p. 279–282.
  20. Boehm, E., Bassat, J.M., Steil, M.C., Dordor, P., Mauvy, F., and Grenier, J.C., Solid State Sci., 2003, vol. 5, p. 973–981.
  21. Flura, A., Nicollet, C., Fourcade, S., Vibhu, V., Rougier, A., Bassat, J-M., and Grenier, J-C., Electrochim. Acta, 2015, vol. 174, p. 1030–1040.
  22. Kim, G.T., Wang, S., Jacobson, A.J., Yuan, Z., and Chen, C., J. Mater. Chem., 2007, vol. 17, p. 1316–1320.
  23. Minervini, L., Grimes, R.W., Kilner, J.A., and Sickafus, K.E., J. Mat. Chem., 2000, vol. 10, p. 2349–2354.
  24. Mogensen, M., Sammes, N.M., and Tompsett, G.A., Solid State Ionics, 2000, vol. 129, p. 63–94.
  25. Pikalova, E.Yu., Eremeev, N.F., Kolchugin, A.A., Sadovskaya, E.M., Pelipenko, V.V., Bogdanovich, N.M., Filonova, E.A., and Sadykov, V.A., Structural, electrical and electrochemical characteristics and oxygen transport properties of the alkaline earth metal doped Ln2NiO4, Abstracts, “12th Int. Symposium on Systems with Fast Ionic Transport (issfit-12), Lithuania, Kaunas, July 3–7, 2016,” Kaunas, 2016.
  26. Sadykov, V.A., Eremeev, N.F., Usol’tsev, V.V., Bobin, A.S., Alikina, G.M., Pelipenko, V.V., Sadovskaya, E.M., Muzykantov, V.S., Bulgakov, N.N., and Uvarov, N.F., Russ. J. Electrochem., 2013, vol. 49, p. 645–651.