Статья
2021

Synthesis and Conductivity of Bismuth Molybdates Doped with Antimony and Tin


A. V. Klimova A. V. Klimova , Z. A. Mikhailovskaya Z. A. Mikhailovskaya , E. S. Buyanova E. S. Buyanova , S. A. Petrova S. A. Petrova
Российский электрохимический журнал
https://doi.org/10.1134/S102319352108005X
Abstract / Full Text

The possibility of synthesizing oxygen-ion conductors based on bismuth molybdate with antimony and tin substituted to the molybdenum sublattice is studied and the specific features of their structure and properties are elucidated. For these compositions, the regions of homogeneity are determined and structure peculiarities are investigated. The unit cell parameters and the volume density of samples are determined. By IR spectroscopic studies, the characteristic frequencies of the metal‑oxygen bonds are determined. The total conductivity of compositions is studied by impedance spectroscopy in the temperature interval from 200 to 825°С. The temperature dependences of conductivity are plotted and its dependences on the concentration are analyzed.

Author information
  • Zavaritskii Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia

    A. V. Klimova, Z. A. Mikhailovskaya & E. S. Buyanova

  • Ural Federal University named after the First President of Russia B.N. Yel’tsin, Faculty of Chemistry, Yekaterinburg, Russia

    A. V. Klimova & E. S. Buyanova

  • Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia

    S. A. Petrova

References
  1. Buttrey, J.D., Compositional and structural trends among the bismuth molybdates, Top. Catal., 2001, vol. 15, p. 235.
  2. Vannier, R.N., Mairesse, G., Abraham, F., and Nowogrocki, G., Bi26Mo10Oδ solid solution type in the Bi2O3–MoO3–V2O5 ternary diagram, J. Solid State Chem., 1996, vol. 122, p. 394.
  3. Ling, C.D., Miller, W., Johnson, M.R., and Richard, D., Local structure, dynamics, and the mechanisms of oxide ionic conduction in Bi26Mo10O69, Chem. Mater., 2012, vol. 24, p. 4607.
  4. Castro, A., Enjalbert, R., Baules, P., and Galy, G., Synthesis and structural evolution of the solid solution Bi(Bi12 – xTexO14)Mo4 – xV1 + xO20 (0 ≤ x < 2.5), J. Solid State Chem., 1998, vol. 139, p. 185.
  5. Galy, J., Enjalbert, R., Rozier, P., and Millet, P., Lone pair stereoactivity versus anionic conductivity. Columnar structures in the Bi2O3–MoO3 system, Solid State Sci., 2003, vol. 5, p. 165.
  6. Enjalbert, R., Hasselmann, G., and Galy, J., [Bi12O14E12]n columns and lone pairs E in Bi13Mo4VO34E13: Synthesis, crystal structure, and chemistry of the Bi2O3–MoO3–V2O5 system, J. Solid State Chem., 1997, vol. 131, p. 236.
  7. Vannier, R.N., Danzé, S., Nowogrocki, G., Marielle, H., and Mairesse, G., A new class of mono-dimensional bismuth-based oxide anion conductors with a structure based on [Bi12O14] columns, Solid State Ionics, 2000, vol. 136, p. 51.
  8. Mikhailovskaya, Z.A., Buyanova, E.S., Petrova, S.A., Morozova, M.V., and Eremina, K.S., One-dimensional oxygen-ion conductors based on phosphorus-substituted bismuth molybdates: Preparation and characterization, Russ. J. Inorg. Chem., 2017, vol. 62, p. 1549.
  9. Alekseeva, O.A., Verina, I.A., Sorokina, N.I., Kharitonova, E.P., and Voronkova, V.I., Structure and properties of antimony–doped lanthanum molybdate La2Mo2O9, Crystallogr. Rep., 2011, vol. 56, p. 435.
  10. Bégué, P., Enjalbert, R., Galy, J., and Castro, A., Single-crystal X-ray investigations of the structures of γ(H)Bi2MoO6 and its partially substituted As3+ and Sb3+ homologues, Solid State Sci., 2000, vol. 2, p. 637.
  11. Graziani, M. and Rao, C.N.R., Advances in catalyst design, Proceedings of the 2nd Workshop on Catalyst Design, Singapore: World Scientific, 1993, vol. 2, p. 412.
  12. Borah, L.N. and Pandey, A., Impedance studies of La2Mo2 – xSnxO9 – δ oxide ion conductors, Acta Metall. Sin. – Engl. Lett., 2013, vol. 26, p. 425.
  13. Lidin, R.A., Molochko, V.A., and Andreeva, L.L., Khimicheskie svoistva neorganicheskikh veshchestv (Chemical Properties of Inorganic Substances), Moscow: Khimiya, 2000.
  14. Rodriguez-Carvajal, J., Recent developments of the program FULLPROF, CPD Newsletter, 2001, vol. 26, p. 12.
  15. Mikhaylovskaya, Z.A., Petrova, S.A., Abrahams, I., Buyanova, E.S., Morozova, M.V., and Kellerman, D.G., Structure and conductivity in iron-doped Bi26Mo10O69 – δ, Ionics, 2018, vol. 24, p. 3983. https://doi.org/10.1007/s11581-018-2543-1
  16. Mikhaylovskaya, Z.A., Petrova, S.A., Buyanova, E.S., and Abrahams, A., High-temperature studies of the structure of complex oxides based on Bi26Mo10O69 – d , J. Struct. Chem., 2018, vol. 59, p. 2001.
  17. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A., 1976, vol. 32, p. 751.
  18. Li, H.H., Li, K.W., and Wang, H., Hydrothermal synthesis and photocatalytic properties of bismuth molybdate materials, Mater. Chem. Phys., 2009, vol. 116, p. 134.
  19. Paul, T. and Ghosh, A., Structure and vibrational properties of La2 – xBixMo2O9 (0.05 ≤ x ≤ 0.4) oxygen ion conductors, J. Alloys Compd., 2014, vol. 613, p. 146.
  20. Ayeshamariam, A., Ramalingam, S., Bououdina, M., and Jayachandran, M., Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV–Visible and NMR) analysis using HF and DFT calculations, Spectrochim. Acta A, 2014, vol. 118, p. 1135.
  21. Geng, L., Meng, C.Y., Lin, C.S., and Cheng, W.D., A new strontium antimonateIII Sr5Sb22O38: Synthesis, crystal structure and characterizations, J. Solid State Chem., 2013, vol. 203, p. 74.
  22. Deng, Z., Chen, D., Tang, F., Ren, J., and Muscat, A.J., Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section, Nano Res., 2009, vol. 2, p. 151.
  23. Irvine, J.T.S., Sinclair, D.C., and West, A.R., Electroceramics: Characterization by impedance spectroscopy, Adv. Mater., 1990, vol. 2, p. 132.