Ion Mobility and Conduction in the (NH4)6LiHf2Zr2F23 Compound

V. Ya. Kavun V. Ya. Kavun , T. F. Antokhina T. F. Antokhina , N. N. Savchenko N. N. Savchenko , M. M. Polyantsev M. M. Polyantsev , A. B. Podgorbunskii A. B. Podgorbunskii
Российский электрохимический журнал
Abstract / Full Text

The ion mobility and conduction in the (NH4)6LiHf2Zr2F23 compound are studied by 1H, 19F NMR and impedance spectroscopy methods. The types of ion motion in fluoride and ammonium sublattices are determined in the temperature interval from 150 to 450 K. As a result of the order‑disorder phase transition at the temperature above 400 K, the metastable high-temperature β-modification of this compound with ionic diffusion in both sublattices is formed. The conductivity in this compound at 450 K is found to be 4.5 × 10–3 S/cm.

Author information
  • Institute of Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia

    V. Ya. Kavun, T. F. Antokhina, N. N. Savchenko, M. M. Polyantsev & A. B. Podgorbunskii

  1. Ivanov-Schitz, A.K. and Murin, I.V., Ionika Tverdogo Tela (Solid State Ionics), Vol. 1, St. Petersburg: St. Petersburg University, 2000.
  2. Ivanov-Schitz, A.K. and Murin, I.V., Ionika Tverdogo Tela (Solid State Ionics), Vol. 2, St. Petersburg: St. Petersburg University, 2010.
  3. Kavun, V.Ya. and Sergienko, V.I., Diffusionnaya podvizhnost’ i ionnyi transport v kristallicheskikh i amorfnykh ftoridakh elementov IV gruppy i sur'my(III), (Diffusion Mobility and Ionic Transport in Crystaline and Amorphous Fluorides of IV Group Elements and Antimony(III)), Vladivostok: Dal’nauka, 2004.
  4. Réau, J.M., Portier, J., Levasseur, A., Villeneuve, G., and Pouchard, M., Characteristic properties of new solid electrolytes, Mat. Res. Bull., 1978, vol. 13, p. 1415.
  5. Trnovcová, V., Fedorov, P.P., and Furar, I., Fluoride solid electrolytes, Russ. J. Electrochem., 2009, vol. 45, p. 630.
  6. Réau, J.M. and Hagenmuller, P., Fast ionic conductivity of fluorine anions with fluorite- or tysonite-type structures, Rev. Inorg. Chem., 1999, vol. 19, nos. 1–2, p. 45.
  7. Patro, N. and Hariharan, K., Fast fluoride ion conducting materials in solid state ionics: an overview, Solid State Ionics, 2013, vol. 239, p. 41.
  8. Hull, S., Superionics: crystal structures and conduction processes, Rep. Prog. Phys., 2004, vol. 67, p. 1233.
  9. Cherkasov, B.I., Moskvich, Yu. N., Sukhovskoi, A.A., and Davidovich, R.L., F19 NMR study of internal motions in a new family of superionic crystals M2ZrF6 and M2HfF6, Fiz. Tverd. Tela, 1988, vol. 30, p. 1652.
  10. Kavun, V.Ya., Gerasimenko, A.V., Sergienko, V.I., et al., Original of superionic conduction in fluoro complexes of zirconium and hafnium with ammonium, thallium(I), and alkali metal cations, Russ. J. Appl. Chem., 2000, vol. 73, p. 1025.
  11. Mallikarjunaiah, K.J., Ramesh, K.P., and Damle, R., H-1 and F-19 NMR relaxation time studies in (NH4)2ZrF6 superionic conductor, Appl. Magn. Res., 2009, vol. 35, p. 449.
  12. Avignant, D., Mansouri, I., Chevalier, R., and Cousseins, J.C., Crystal structure and fast ionic conduction of TlZrF5, J. Solid State Chem., 1981, vol. 38, p.121.
  13. Kavun, V.Ya., Sergienko,V.I., Chernyshov, B.N., Didenko, N.A., Bakeeva, N.G., and Ignateva, L.N., Proton and fluorine-19 NMR study of the internal motion of atomic groups and superionic conductivity in ammonium hexafluorozirconate and -hafnate, Zh. Neorg. Khim. 1991, vol. 36(4), p. 1004.
  14. Furukawa, Y., Sasaki A., and Nakamura, D., Electrical conductivity due to ammonium ion transport in (NH4)3[MF6] (M : Al, Ga, In) and (NH4)2K[AlF6] crystals, Solid State Ionics, 1990, vol. 42, p. 223.
  15. Davidovich, R.L., Stereochemistry of zirconium and hafnium fluoro complexes, Russ. J. Coord. Chem., 1998, vol. 24, p. 751.
  16. Kavun, V.Ya., Sergienko, V.I., Uvarov, N.F., and Antokhina, T.F., Internal mobility, phase transition, and ionic conduction in Na(NH4)6Zr4F23 and Li(NH4)6Zr4F23, Russ. J. Struct. Chem., 2002, vol. 43, p. 429.
  17. Kavun, V.Ya., Antokhina, T.F., Savchenko, N.N., Polyantsev, M.M., and Podgorbunskii, A.B., Ion mobility, phase transitions and conductivity in the fluorides (NH4)6LiZr3HfF23 and (NH4)6LiZrHf3F23, J. Solid State Chem., 2019, vol. 270, p. 524.
  18. Kavun, V.Ya., Antokhina, T.F., Savchenko, N.N., et al., Thermal and transport properties, ion mobility, and phase transitions in compounds (NH4)6CsZr4F23 and (NH4)6CsHf4F23, Russ. J. Inorg. Chem., 2018, vol. 63, p. 78.
  19. Kavun, V.Ya., Antokhina, T.F., Savchenko, N.N., Polyan-tsev, M.M., and Brovkina, O.V., Synthesis, ion mobility, and phase transition in the (NH4)6LiHf2Zr2F23 compound, Russ. J. Struct. Chem., 2018, vol. 59, p. 1825.
  20. Kavun, V.Ya., Didenko, N.A., Gerasimenko, A.V., Slobodyuk, A.B., Tkachenko, I.A., Uvarov, N.F., and Sergienko, V.I., Synthesis and complex study of potassium ammonium hexafluorozirconates: ion mobility, phase transitions, and ionic conductivity in K2 – n(NH4)nZrF6 compounds as probed by NMR, DTA, and impedance spectroscopy, Russ. J. Inorg. Chem., 2006, vol. 51, p. 513.
  21. Gerasimenko, A.V., Kavun, V.Ya., Didenko, N.A., Slobodyuk, A.B., Uvarov, N.F., and Sergienko, V.I., Synthesis, structure, ion mobility, phase transitions, and ion transport in rubidium ammonium hexafluorozirconates, Russ. J. Inorg. Chem., 2007, vol. 52, p. 713.
  22. Sobolev, B.P. and Sorokin, N.I., Nonstoichiometry in inorganic fluorides: 2. Ionic conductivity of nonstoichiometric M1 – xRxF2 + x and R1 – yMyF3 – y crystals (M = Ca, Sr, Ba; R are rare earth elements), Crystallogr. Rep., 2014, vol. 59, p. 807.
  23. Rakhmatullin, A., Boča, M., Mlynáriková, J., Hadzimová, E., Vasková, Z., Polovov, I.B., and Mičušík, M., Solid state NMR and XPS of ternary fluorido-zirconates of various coordination modes, J. Fluor. Chem., 2018, vol. 208, p. 24.
  24. Gabuda, S.P. and Lundin, A.G., Vnutrennyaya podvizhnost’ v tverdom tele (Internal Mobility in Solids), Novosibirsk: Nauka, 1986.
  25. Lundin, A.G. and Fedin, E.I., YaMR-spectroskopiya (NMR Spectroscopy), Moscow: Nauka, 1986.
  26. Bukvetskii, B.V., Gerasimenko, A.V., and Davidovich, R.L., Crystalline-structure of NH4ZrF5 ∙ 0.75H2O and (NH4)2ZrF6 ammonium fluorozirconates, Koord. Khim., 1991, vol. 17, p. 35.
  27. Watton, A., Reynhardt, E.C., and Petch, H.E., NMR investigation of ammonium ion motions in two ammonium bisulfates, J. Chem. Phys., 1976, vol. 65, p. 4370.
  28. Sasaki, A., Furukava, Y., and Nakamura, D., Ber. Bunsenges, Phys. Chem., 1989, vol. 93, p. 1142.
  29. Kavun, V.Ya., Gabuda, S.P., Kozlova, S.G., et al., Intramolecular mobility and phase transitions in ammonium oxofluoroniobates (NH4)2NbOF5 and (NH4)3NbOF6, a NMR and DFT study, J. Fluor. Chem., 2011, vol. 132, p. 698.
  30. Kavun, V.Ya., Uvarov, N.F., Zemnukhova, L.A., and Brovkina, O.V., Internal mobility, phase transitions, and ionic conductivity in ammonium fluoroantimonates(III) NH4Sb4F13, NH4Sb3F10, NH4Sb2F7, (NH4)2Sb3F11 (NH4)3Sb4F15 and NH4SbF4, Russ. J. Inorg. Chem., 2004, vol. 49, p. 925.
  31. Kavun, V.Ya., Uvarov, N.F., Slobodyuk, A.B., et al., Superionic conduction in complex fluorides of antimony(III) MnSbxFy (M – cations of alkali metal, ammonium, or thallium, n = 1–3; x = 1–4), Russ. J. Electrochem., 2005, vol. 41, p. 488.
  32. Kavun, V.Ya., Polyantsev, M.M., Zemnukhova, L.A., et al., Ion mobility and phase transitions in heptafluorodiantimonates (III) Cs(1 – x)(NH4)xSb2F7 and K0.4Rb0.6Sb2F7 according to NMR and DSC data, J. Fluor. Chem., 2014, vol. 168, p. 198.
  33. Grotel, M., Kozak, A., and Pajak, Z., 1H and 19F NMR study of cation and anion motions in guanidinium hexafluorozirconate, Naturforsch., 1996, vol. 51a, p. 991.
  34. Gerasimenko, A.V., Kavun, V.Ya., Sergienko, V.I., and Antokhina, T.F., Crystal structure, phase transition, and ion dynamics in Li(NH4)6Zr4F23, Russ. J. Coord. Chem., 1999, vol. 25, p. 562.
  35. Gabuda, S.P., Davidovich, R.L., Kozlova, S.G., and Moroz, N.K., Phase transitions, and ionic mobility in thallium fluorozirconates, Russ. J. Structur. Chem., 1996, vol. 37, p. 340.
  36. Kavun, V.Ya., Gabuda, S.P., Kozlova, S.G., and Davidovich, R.L., 19F and 203, 205Tl NMR and structural transformations in chain ammonium and thallium hexafluorozirconates and hexafluorohafnates, Russ. J. Structur. Chem., 1999, vol. 40, p. 541.
  37. Buznik, V.M., Moskvich, Yu,N., Sokolovich, V.V., et al., A study of the anion mobility in mixed fluorides with the tysonite structure, J. Structur. Chem., 1979, vol. 20, p. 529.
  38. Kavun, V.Ya., Uvarov, N.F., Slobodyuk, A.B., et al., Ion mobility and conductivity in the M0.5 – xPbxBi0.5F2 + x (M = K, Rb) solid solutions with fluorite structure, J. Solid State Chem., 2017, vol. 249, p. 204.
  39. Duvel, A., Heitjans, P., Fedorov, P., et al., Is geometric frustration-induced disorder a recipe for high ionic conductivity?, J. Am. Chem. Soc., 2017, vol. 139, p. 5842.
  40. Shannon, R.D. and Fischer, R.X., Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides, Phys. Rev. B, 2006, vol. 73, p. 235111.
  41. Uvarov, N.F., Kompozitsionnye tverdye elektrolity (Composition Solid Electrolytes), Novosibirsk: SO RAN, 2008.
  42. Gabuda, S.P. and Pletnev, R.N., Primenenie YaMR v khimii tverdogo tela (The Use of NMR in Solid State Chemistry), Yekaterinburg: Yekaterinburg, 1996.
  43. Voit, E.I., Voit, A.V., Kavun, V.Ya., and Sergienko, V.I., Quantum-chemical study of potassium and ammonium hexafluorozirconates, J. Structur. Chem., 2004, vol. 45, p. 610.
  44. Gibson, I.R., Dransfield, G.P., and Irvine, J.T.S., Sinterability of commercial 8 mol % yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity, J. Mater. Sci. 1998, vol. 33, p. 4297.
  45. West, A.R., Solid State Chemistry and Its Applications, Chichester: Wiley, 1984; Moscow: Mir, 1988.